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ABSTRACT 

ABDO, MOHAMMAD GAMAL MOHAMMAD MOSTAFA. Multi-Level Reduced Order 

Modeling Equipped with Probabilistic Error Bounds. (Under the direction of Hany S. Abdel-

Khalik, Dmitriy Y. Anistratov, Ilse C. F. Ipsen and Ralph C. Smith). 

 

Over the past few decades, engineering analysts have increased their reliance on high 

fidelity modeling to better emulate, i.e., simulate, the behavior of complex engineering systems, 

such as nuclear reactors. While this approach has a tremendous benefit in terms of developing a 

better understanding of system behavior under the broad range of conditions expected during 

normal and off-normal conditions, it comes at a significant computational cost that may not be 

feasible for day-to-day engineering calculations. This follows because high fidelity simulation is 

typically based on extremely detailed models with tightly coupled physics which require 

substantial computing resources as compared to phenomenological models that are more suited 

for routine engineering analyses. In order to reap the benefits of high fidelity simulation, 

significant improvements in the computational efficiency are warranted to allow execution of 

computationally taxing engineering analyses such as uncertainty quantification, sensitivity 

analysis, and design optimization.  

This thesis develops robust reduced order modeling (ROM) techniques to achieve the 

needed efficiency to render feasible the use of high fidelity tools for routine engineering 

analyses. Markedly different from the state-of-the-art ROM techniques, our work focuses only 

on techniques which can quantify the credibility of the reduction which can be measured with the 

reduction errors upper-bounded for the envisaged range of ROM model application. Our 

objective is two-fold. First, further developments of ROM techniques are proposed when 

conventional ROM techniques are too taxing to be computationally practical. This is achieved 

via a multi-level ROM methodology designed to take advantage of the multi-scale modeling 
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strategy typically employed for computationally taxing models such as those associated with the 

modeling of nuclear reactor behavior. Second, the discrepancies between the original model and 

ROM model predictions over the full range of model application conditions are upper-bounded 

in a probabilistic sense with high probability.   

ROM techniques may be classified into two broad categories: surrogate construction 

techniques and dimensionality reduction techniques, with the latter being the primary focus of 

this work. We focus on dimensionality reduction, because it offers a rigorous approach by which 

reduction errors can be quantified via upper-bounds that are met in a probabilistic sense. 

Surrogate techniques typically rely on fitting a parametric model form to the original model at a 

number of training points, with the residual of the fit taken as a measure of the prediction 

accuracy of the surrogate. This approach, however, does not generally guarantee that the 

surrogate model predictions at points not included in the training process will be bound by the 

error estimated from the fitting residual.  

Dimensionality reduction techniques however employ a different philosophy to render 

the reduction, wherein randomized snapshots of the model variables, such as the model 

parameters, responses, or state variables, are projected onto lower dimensional subspaces, 

referred to as the “active subspaces”, which are selected to capture a user-defined portion of the 

snapshots variations. Once determined, the ROM model application involves constraining the 

variables to the active subspaces. In doing so, the contribution from the variables discarded 

components can be estimated using a fundamental theorem from random matrix theory which 

has its roots in Dixon’s theory, developed in 1983. This theory was initially presented for linear 

matrix operators. The thesis extends this theorem’s results to allow reduction of general smooth 

nonlinear operators. The result is an approach by which the adequacy of a given active subspace 
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determined using a given set of snapshots, generated either using the full high fidelity model, or 

other models with lower fidelity, can be assessed, which provides insight to the analyst on the 

type of snapshots required to reach a reduction that can satisfy user-defined preset tolerance 

limits on the reduction errors.  

Reactor physics calculations are employed as a test bed for the proposed developments. 

The focus will be on reducing the effective dimensionality of the various data streams such as the 

cross-section data and the neutron flux. The developed methods will be applied to representative 

assembly level calculations, where the size of the cross-section and flux spaces are typically 

large, as required by downstream core calculations, in order to capture the broad range of 

conditions expected during reactor operation.  
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CHAPTER 1 

 INTRODUCTION 

To understand the behavior of real-world complex systems, one must be able to model in 

detail the various phenomena affecting the system’s macroscopic behavior. For systems that are 

sufficiently complex like nuclear reactors, the associated models can be extremely expensive 

which may render their use computationally impractical for routine engineering calculations. To 

overcome this challenge, some level of reduction is typically required to allow repeated 

execution for routine engineering calculations and engineering-oriented studies such as design 

optimization, sensitivity analysis, and uncertainty quantification. The computational framework 

employed to introduce the reduction is typically referred to as reduced order modeling (ROM). 

ROM entails any process by which the complexity of the calculations can be reduced. The 

complexity can be measured in terms of the computational cost required to execute the model, 

the dimensionality of the state variables, and the input and output data interfaces. 

1.1 Overview 

In the next few subsections, we provide a short overview of different ROM methods. Our 

goal is to highlight the salient features of each method and its associated challenges. This is to 

motivate the two primary objectives of this thesis, outlined below and will be referenced later in 

the discussion.  

 Development of accurate and realistic error bounds on the reduced models to allow for 

reliable extrapolation to the entire range of the validity of the original model, i.e., prior to 

its reduction. 
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 Further development of existing ROM methods to allow for a more efficient rendition of 

the reduced model when the original model is too expensive to execute as required by 

existing ROM methods.  

1.2 Literature Review 

ROM methods may be classified into two categories: Surrogate Construction methods 

(SC) (also referred as function approximation) and Dimensionality Reduction methods (DR), as 

highlighted in Fig. 1-1. 

 

To help motivate the pros and cons of ROM methods, we employ a generic model to 

describe the original model for which a reduction is sought. Consider a model with y responses, 

and x input parameters, where f is a general smooth nonlinear function, i.e.,  y f x . 

 

 

Fig. 1-1. ROM Methods 
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1.2.1 Surrogate Model Construction (SC) 

Surrogate construction (SC) or function approximation methods aim to use an 

approximate representation f  (also known as meta-model) as a substitute for the original 

function f  to approximate the relationship between the input data (parameters) and the 

responses of interest via analytic functions with undetermined coefficients or features. This can 

be mathematically described as: 

    f x f x                                                 (1.1) 

where nx  is the original feature, while  x  is a linear or a nonlinear map that maps 

x to a different n-dimensional space via transformations that preserve either local or global 

properties depending on the algorithm used, but gets rid of the correlation between the original 

variables. These algorithms aim to reduce dimensionality, reduce complexity and try to reveal 

the so-called latent variables necessary to describe the system after de-correlating the original n 

variables. In nuclear applications x can be the cross sections which are known to have noticeably 

high degree of correlation resulting from constraints dictated by either the physics or the designer 

herself. 

 These coefficients/features are usually determined via fitting or optimization with the 

discrepancy between the original and the surrogate model predictions driving a cost function for 

an optimization search. Depending on the type of analytic function employed, SC methods are 

categorized into two categories, statistics (or data) and physics (or model)-based methods. 
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1.2.1.1 Statistics-based Surrogate Construction 

In this category, the surrogate functional form is heuristically selected, relying either on 

the modeler’s experience gleaned from a large number of model executions conducted over a 

wide range of operational conditions or dictated by techniques such as Guassian Processes. 

Analysis of these executions provides observable trends that enable the modeler to identify a 

palette of mathematical functions that she believes are representative of the model behavior over 

the range of conditions of interest to the application.  

A wide variety of methods falls under this category such as linear regression, polynomial 

chaos expansion, stochastic collocation, Lagrange polynomial expansion, polynomial response 

surface (PRS), radial basis function (RBF), radial basis neural network (RBNN), kriging (KRG), 

support vector machines (SVMs), etc.[1, 2]. 

SC methods have been widely used and developed independently in many scientific 

fields for model approximation, validation studies, and design optimization, etc. For example, in 

1998 Isukapalli [3] employed stochastic response surface methods (SRSMs) to propagate 

uncertainties in environmental and biological systems such as estimating doses of toxic 

chemicals in human body to get around the prohibitive number of simulations dictated by the 

standard Monte Carlo and Latin Hypercube Sampling and hence lends feasibility to 

comprehensive uncertainty characterization of real-world complex applications. Few years later 

(2001), (Kennedy and O’Hagan) [4] used Kriging (Gaussian Process) to build surrogates for 

black-boxed computationally expensive models. One year later Doebling et al. [5, 6] proposed a 

metamodel response surface of the LANL threaded assembly that enables a better validation 

framework for structural dynamics. Giunta et al. (2004) [7] used different sampling methods to 
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build a response surface of a Rosenbrock function. Chen et al. (2006) [8] developed a surrogate 

using tensor product basis functions to perform sensitivity analysis and uncertainty quantification 

to optimize the design of an engine piston. Liem (2007) [9] developed a multi-agent collective 

method on an aviation system for environmental impact by estimating aircraft emissions. 

Bliznyuk et al. (2008) [10] hybridized RBF and Gaussian Processes interpolants with Markov 

Chain Monte Carlo. Of course the RBF and the GPs interpolants aimed to reduce the 

computational cost and hence lend feasibility to the MCMC integrals.  

Surrogate models have been widely employed in the nuclear engineering community, 

starting from Hevesi et al. (1992) [11] who employed co-Kriging to infer precipitation values of 

a nuclear waste site using sparse measurements, then Roston et al. (1996) [12] who focused on 

modeling excessive vibration of control rods by hybridizing physical models with neural 

networks. This was synchronized with the book [13] published by Uhrig & Tsoukalas, which 

synergistically combined fuzzy and neural networks to gain feature extraction and modeling 

capabilities of both approaches. Next Hines & Uhrig (2005) managed to address issues facing the 

operation of nuclear power plants with computational intelligence such as noise analysis, 

regularization of ill-posed problems, on-line monitoring and sensor validation [14]. Few years 

later Fouet and Probst (2009) used Surrogates to perform sensitivity analysis during Large Break 

LOCA on ZION nuclear power plant [15]. Khalafi et al. (2011) then developed an artificial 

neural network to predict neutronics and thermo-hydraulics parameters in a large VVER nuclear 

reactors [16]. In 2004 Krivtchik et al. managed to build a surrogate model for a depletion code 

for uncertainty propagation [17]. Lockwood & Anitescu (2011) developed a gradient-enhanced 

universal Kriging model for uncertainty propagation in nuclear engineering applications [18]. 
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 Finally, Yankov (2015) presented a full analysis of reactor simulations using non-

intrusive techniques to build the surrogate models such as kriging and anchored-ANOVA 

decomposition [19] coupled with collocation techniques. 

Polynomial Chaos techniques were born from the stochastic finite elements and had been 

conducted in nuclear applications, aiming to expand variables from the governing partial 

differential equations in terms of orthogonal polynomials usually followed by some sort of 

orthogonal projection such as Galerkin projections. Nuclear engineers often look at this from the 

same perspective as expanding scattering cross sections in terms of Legendre polynomials. 

Similar to other spectral methods, this enables the collocation of Uncertainty Quantification 

(UQ) under the generality of stochastic sampling but still inherit the accelerated convergence of 

the deterministic methods. In (2007) Williams [20] used polynomial chaos to trace how random 

material properties can affect radiation transport through a slab. In (2011) Fichtl and Prinja [21] 

employed polynomial chaos-collocation to draw a picture of how the uncertainties in total cross 

sections reflect in the scalar flux probability density function in both absorbing and diffusive 

media. Nonlinear polynomial chaos was conducted by Ayres and Williams (2013) [22] to relate 

uncertainties in cross sections to uncertainties in eigenvalue, they leveraged the use of linear 

methods against the non-linear conventional polynomial chaos by performing some sort of 

simultaneous diagonalization of matrices which yielded accurate results yet faster than the 

nonlinear PC with a factor that sometimes reaches more than 100.         

SC methods have received large popularity because they can be applied in a non-intrusive 

manner, meaning that no code modifications nor direct knowledge of the model details are 

required. Nevertheless, it is challenging to quantify the errors resulting from the surrogate 

approximations in a manner that allows for a credible extrapolation of surrogate predictions to a 
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wider range of operational conditions. This is because many of these surrogate model forms are 

selected statistically, i.e., not informed by the physics of the simulation. This limits the use of 

surrogate models constructed in this fashion to be used for interpolation purposes only, typically 

done at points in the parameter space which are close to the training points used to determine the 

unknown coefficients/features of the surrogate model. The second challenge facing SC methods 

is that the number of model executions required for training can be overwhelmingly high for 

complex models such as those encountered in reactor analysis problems. This is because the 

number of required model executions is a function of the number of parameters as well as the 

order of the nonlinearity of the model, that is to say, if the modeler is building a linear surrogate 

for a model with n parameters then, at a minimum n executions of the original model are 

required. This could be prohibitive in reactor physics where the number of parameters could be 

in the order of 106. For higher order models, e.g., 2nd order, the number of model executions 

typically grow exponentially, which is often referred to as the curse of dimensionality.  

1.2.1.2 Physics-based Surrogate Construction 

Physics-based SC methods derive the functional form of the surrogate using the physics 

equations governing the behavior of the original model. This approach precludes the need for 

selection of functions, fitting, and training. Most importantly, one can establish robust error 

bounds on the surrogate model predictions which can be defended mathematically, thereby 

allowing the surrogate model to be extrapolated over the entire range of applicability of the 

original model. The primary challenge is that one must have an intimate knowledge of the inner 

anatomy of the model, implying knowledge of governing equations, types of solvers and 

sometimes the availability of an adjoint solver is required. One example of such approach is the 

exact-to-precision generalized perturbation theory (EPGPT) surrogate model developed by Wang 
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et. al., 2013 [23], where he combined reduced basis methods, range finding algorithms with 

generalized perturbation theory to construct a unified framework that enables the reduction of 

high overhead computations involved in reactor calculations with errors that are within the 

machine precision and hence came the terminology Exact-to-precision generalized perturbation 

theorem (EPGPT). Another example would be the work of Mickus et al. (2014) [24] work which 

proposed an approach to physics-based surrogate for application with Integrated Deterministic 

Probabilistic Safety Assessment. In this method, the authors chose not to use the well-known 

Neural Networks methods since there is no actual physics modeling rendered, in addition to the 

huge number of data points required for the fitting process. This leads to some lack of reliability 

and robustness of the surrogate model outside the experimental domain given that any 

extrapolation will acquire no physics reasoning. Instead, the authors selected the most important 

physical phenomena to be resolved by the surrogate model and then calibrated the model to 

capture parameters that were not directly modeled in the surrogate and hence arrived at an 

intermediate stage between pure neural networks and analytical solutions.       

1.2.2 Dimensionality Reduction (DR) 

Instead of finding an approximate function to replace the original function f, DR 

techniques attempt to reduce the intrinsic dimensionality of the model variables, such as the 

input parameters and/or the output responses, which are related by the function f which remains 

unchanged. This is accomplished by searching for correlations between the variables which, if 

present, the implication is that the intrinsic dimensionality of the variables may be much less 

than the nominal dimensionality. In such case, one can identify a small number of reduced 

variables which can be used to describe the dominant features of the model variations over the 

expected range of operational conditions. This can be mathematically expressed as: 
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    f x f x                               (1.2) 

where nx  is the original n-dimensional feature and  x  is again either a linear (LDR) or a 

nonlinear map (NDR) that maps the original feature to a world of non-correlated variables.  

If the relationship between the reduced variables and original variables is linear, the 

reduced variables are described by subspaces, denoted hereinafter by “active subspaces”, and the 

reduction methods are referred to as linear DR or LDR for short. The use of subspaces provides 

two advantages, a geometric advantage which allows one to provide an intuitive understanding 

of the mechanics of reduction, and a mathematical advantage wherein linear algebra and matrix 

theory methods may be leveraged to describe the reduction [25-28].  

In LDR, all variables variations that are orthogonal to the active subspaces are considered 

to have a negligible impact on the model behavior as measured in terms of its key responses of 

interest. This implies that the physics model as applied to the engineering application of interest 

constraints the variables variations to the active subspace, and/or that variables variations that are 

orthogonal to the active subspace have very low sensitivities for the responses of interest.  

The implication of LDR is that one can recast many engineering analyses whose cost 

directly depends on the number of input parameters and/or output responses into a reduced form 

that is described by the reduced variables. 

 Examples include Uncertainty Quantification (UQ), Sensitivity Analysis (SA), and Data 

Assimilation (DA), whose cost is known to be very sensitive to the number of model variables. 

Earlier work has shown that for typical reactor analysis models, the number of variables could be 
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in the order of 104-109 whereas the number of reduced variables is in the order of 102 variables 

only. This dramatic reduction can enable these analyses to be computationally tractable.  

For LDR methods to be reliable, one must be able to characterize the errors resulting 

from constraining the variables variations to the active subspaces only. This represents one of the 

objectives of this thesis where the aim is to develop upper-bounds on the LDR errors when the 

reduction is rendered at some or all of the models interfaces, including the parameters and the 

responses for single and multi-physics models. 

It is important here to note that LDR methods have been researched for over a century by 

many scientists from different backgrounds with the same idea forming the basis for many 

methods. The first LDR method can be traced back to the work by Karl Pearson [29] in 1901 on 

Principal Component Analysis (PCA). The PCA method searches a number of multi-dimensional 

snapshots for the most informative directions that can be used to describe the data variations to a 

user-defined tolerance. About 30 years later, the same idea was further developed by Hotelling 

(1933) [30] which remained popular in the multivariate quality control community under the 

name of Hotelling Transformation. The basic idea of LDR found its way in the works of many 

scientists in a wide number of scientific disciplines. For instance, the Karhunen-Loeve 

Transformation (KLT) commonly employed in the signal processing community, the Proper 

Orthogonal Decomposition (POD) in the mechanical engineering community, the Singular Value 

Decomposition (SVD) in the linear algebra community, the Eckart-Young theorem (Harman, 

1960) or Schmidt-Mirsky theorem in psychometrics, the Empirical Orthogonal Function (EOF) 

in the meteorological science, and spectral decomposition in vibration community, all represents 

examples of methods with roots in linear dimensionality reduction.  
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Another important extension of the basic LDR idea is the work by Fisher on Linear 

Discriminant Analysis (LDA) in 1936 for classification [31]. LDA expands the dependent 

variables as a linear combination of measured features by searching for a linear map to maximize 

some measure of separability between data points to allow for credible classification.  

Before ending this section, we note that DR may be rendered in a nonlinear manner as 

well,  meaning that the relationship between the original and reduced variables may be selected 

to be nonlinear, implying nonlinear dimensionality reduction or NDR for short. NDR methods 

are categorized into three families depending on what the method preserves while searching for 

the required map (i.e., the linear or nonlinear transformation of the original and the reduced 

variables): methods that preserve local properties such as Local Linear Embedding (LLE) [32], 

Laplacian Eigen Maps [33], and Hessian Local Linear Embedding (HLLE) [34], methods that 

preserve global properties such as Multidimensional Scaling (MDS) [35], Isomaps [36], Kernel 

PCA [37], diffusion maps [38], Generalized Discriminant analysis (GDA) [39, 40], Multilayer 

Autoencoder [41], Stochastic Neighbor Embedding (SNE) [42]. Or methods that perform global 

alignment of local properties like Locally Linear Coordination (LLC) [43].    

NDR methods will not be discussed here, and the interested reader may consult [25, 44-

47] for more details and comparisons between them. NDR methods are out of our scope for 

several reasons: First, the payoff of LDR methods for reactor physics applications is sufficiently 

large and the methods have not yet been fully explored in the nuclear engineering community. 

Therefore, it is reasonable to leverage LDR methods first before considering more sophisticated 

NDR strategies. Second, the computational cost of reactor physics methods is extremely taxing 

which renders NDR methods less attractive since their associated computational cost is typically 

much higher than LDR methods.  
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And finally, because NDR usually succeeds on tailored highly nonlinear problems such 

as the well-known Swiss roll dataset, while the real applications success for NDR is scarce, 

especially that a vast number of NDR techniques flourish with complex topologies, high 

curvatures, clustered, noisy, or sparse data, which is not the case in nuclear applications [48].      

1.2.2.1 Mathematical Representation of LDR Methods 

A nonlinear function f with n input parameters and m output responses is said to be 

reducible and of parameters intrinsic dimension (0 )x xr r n   and response intrinsic dimension 

(0 )y yr r m   if there exists an n n   operator xP with a rank of xr  and an m m  operator 

yP with a rank of 
yr such that  and x yr r  are the smallest integers satisfying:  

   

 
     .

y xf x f x
x S

f x



  

P P
 

where   used throughout this thesis is the Euclidean norm and   is a user-defined tolerance, 

and S is the domain over which the original model is considered to provide an acceptable 

representation of real behavior, typically referred to as the domain of validity of the original 

model. Notice that we are not concerned here with the question of whether the original model is 

valid or not. Instead, we are only interested in building a reduced model that approximates the 

original model for all conditions of interest. These conditions are typically determined when the 

domain of validity of the original model is known, which is assumed to be a pre-requisite for the 

reduction process.  
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In our context, xP and 
yP are projector operators onto the parameter space and response 

space respectively, such that T

x x xP U U  and T

y y yP U U  where xn r

x


U and ym r

y


U are 

matrices containing the orthonormal columns spanning the active parameter and response 

subspaces respectively. The intrinsic dimensionalities of these operators, i.e. 

  dim R ;  ,z zr z x y P - with R being the range of the operator Pz - are typically much 

smaller than the original dimensions of the parameters and responses spaces, i.e. 

max( , ) min( ,n)x yr r m . The algorithms to construct these matrices are discussed in details in 

Chapter 3. Further, we show that this inequality condition may be satisfied in a probabilistic 

sense with a high probability of 1-10-s, where s is a small integer representing an additional 

number of model executions, referred to as over-samples, more details about this will be 

presented in Chapter 4. 

We make several remarks about this LDR definition. First, note that the definition makes 

no assumptions about the properties of the function f, implying that while the relationship 

between the reduced and original variables is linear, as given by the above equation, the function 

f  being reduced can, in general, be nonlinear.  

Second, ensuring that the above inequality condition is satisfied with an upper-bound   

that is not too conservative employing a reduced dimension r that is not too large represents the 

primary challenge of LDR techniques. Satisfying this condition with a conservative bound is not 

practical as the bound is often too large to render valuable the predictions of the reduced model 

variables for subsequent engineering analyses. Satisfying the condition with a high r value is also 

not practical as it defeats the whole purpose of reduction, that’s to reduce the dimensions 

significantly to render subsequent engineering analysis computationally tractable. In many vital 
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models, the original model dimensions are in the order of millions, whereas the reduced model 

dimension is sought to be in the order of few hundred variables only. With limited model 

evaluations of the order of the reduced dimension r,  

Third, if the inequality condition can indeed be satisfied with small r and acceptable 

tolerance , the implication is that a limited number of degrees of freedom r in the active space is 

sufficient to characterize to a high level of accuracy all possible response variations, whose 

original dimensionalities are often much larger than r. Mathematically, this means that parameter 

perturbations belonging to the active parameter subspace are the ones responsible for the 

observed model response variations, whereas all parameter perturbations that are orthogonal to 

the active subspace induce negligible variations in the responses, which can be bounded by the 

tolerance . 

  Finally, to gain computational efficiency in subsequent engineering analyses requiring 

multiple model executions, ROM confines all parameter perturbations to the active subspace, 

since its dimensionality is much smaller than the original parameter space. For example, one can 

recast all engineering analyses, such as UQ and SA, in terms of the reduced variables 

  x
r rT

xx x U , premised on the assumption that they describe all important parameters 

variations.  

In this thesis, the focus will be on reducing the effective dimensionality of the various 

data streams associated with neutronic calculations. This includes reducing the dimensionality of 

the cross-section space and the flux space. The developed methods will be applied to 

representative assembly level calculations, where the size of the cross-section and flux spaces are 

typically large. Assembly level calculations are carried out to characterize the few-group cross-
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sections used in downstream core calculations as functions of a wide range of conditions, such as 

the assembly type, fuel burnup, fuel and coolant temperature, poison content, etc. This requires 

several thousands of flux evaluations which could be rendered more efficiently using ROM 

methods. 

In our development, we rely on two basic ROM methods, gradient-free and gradient-

based reduction. The gradient-free reduction is designed to render reduction at the output 

interface for the associated model using forward model executions only. Gradient-based 

reduction employs derivative information, often obtained using adjoint methods, to render 

reduction at the input interface. Earlier work has demonstrated the theoretical and 

implementation details of these two methods. Experience with these methods has shown that 

although significant reduction can be rendered, the number of model executions could still be 

computationally expensive. Further, the quantification of the reduction error could be 

problematic especially when multiple reductions are rendered at model-to-model interfaces. 

These two challenges are addressed in this thesis. 
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CHAPTER TWO 

NUCLEAR REACTOR CALCULATIONS 

2.1 Design Calculations 

Nuclear reactor physics calculations, representing the focus of our work, are overviewed 

in this chapter. Reactor physics calculations model the transport of neutrons inside the reactor 

core and the change in fuel isotopics and other core materials due to radioactive transmutation 

over the expected range of reactor operational conditions. The fundamental equations employed 

are the Boltzmann equation which describes the transport of neutrons and the Bateman equation 

which describes the transmutation of fuel and other core materials isotopics. The salient features 

of these equations are described here to set the stage for the discussion of ROM methods. 

The primary source of heat in fission reactors is due to the scission of heavy nuclei by 

slow (i.e., thermal) or energetic (i.e., fast) neutrons. Shortly after the scission of a nucleus, two 

lighter nuclei, called fission fragments, few neutrons, called prompt neutrons, and few gamma 

rays, called prompt gamma, are released. The majority of the mass defect, the difference between 

the mass of the original heavy nucleus and the combined mass of lighter fission fragments and 

prompt neutrons, is released in the form of kinetic energy imparted to the fission fragments and 

prompt neutrons. One typical fission reaction is described by the following equation: 

235 140 94

92 54 38 2 200n U Xe Sr n MeV      

As the fission products collide with surrounding atoms, they slow down converting the 

kinetic energy into heat. The heat generation is sustained via additional fission events induced 
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primarily by the newly born neutrons. The goal of reactor core design is to ensure that the 

number of neutrons born in a given generation is equal to the number born in the previous 

generation to ensure the reaction is sustainable and controllable. When this balance is 

established, the reactor is said to be critical, with the criticality described using the multiplication 

factor k which measures the ratio of neutrons production to neutron loss by parasitic absorption 

and leakage. Parasitic absorption implies a neutron capture event that does not lead to fission, 

e.g., the capture of neutron under the low-lying resonances of U-238, captured by special 

materials, called neutron absorbers, deliberately introduced into the reactor to control criticality. 

The goal is to keep k at a value of 1.0 throughout operation by continually balancing neutron loss 

and production terms. When k < 1.0 or k > 1.0, the number of neutrons will decrease or increase 

forming subcritical or supercritical reactors, respectively. When the reactor power is to be 

increased, k is increased for a short period of time by reducing neutron loss until the desired 

power level is reached, then k is returned back to a value of 1.0. 

To compute and control k, one needs to model in detail the transport and transmutation of 

neutrons inside the core along with the various physics phenomena leading to the production and 

loss of neutrons. Although the physics of transport and transmutations are well-understood, the 

associated computational cost to describe the neutron population in the entire reactor core is still 

considered computationally overwhelming even for supercomputers. To combat this situation, 

reactor physicists have devised complex schemes to reduce the computational cost to render 

practical the prediction of reactor states under the wide range of conditions expected during 

normal and off-normal operation. The idea is highlighted in the figure 2-1, where the calculations 

are split over multiple levels to capture the various physics affecting the macroscopic core 

behavior. 
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Fig. 2-1. Core Calculation Levels. 

The smallest level represents the unit cell comprising a single fuel pin. The second level 

is the fuel lattice, representing a 2D slide of a fuel assembly. The third level is a 3D model of the 

whole core. These three levels are designed to decouple the dominant dependencies of the 

nuclear cross-sections (i.e., space, energy, angle, and time). 
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 Cross-sections are the basic nuclear parameters that characterize the probability of 

interaction between neutrons and various core materials. Given the complicated dependence of 

cross-sections and the heterogeneous core design, the neutron flux becomes a complicated 

function of space, energy, angle, and time. The first two level focus in detail on the energy, and 

angle dependence of the neutron flux, whereas the third level describes in details the spatial and 

temporal dependence. This separation of dependencies has proven to be an effective approach for 

reactor physics calculations. Before explaining these levels, we introduce the neutron transport 

equation to highlight some of the challenges associated with its solution for reactor problems. 

Figure. 2-2 depicts the flow diagram for the calculation procedure. 

 

Fig. 2-2. Computational Sequence. 

For a fast overview about the nuclear reactor calculation reader can consult the 

summarized chapter written by Keisuke Okumura, Yoshiaki Oka, and Yuki Ishiwatari. 
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2.1.1 Neutron Transport Equation (Boltzmann Transport Equation) 

The equation governing the neutrons distribution in a reactor core is referred as the 

Neutron Transport Equation (also known as the Boltzmann Equation) can be written in various 

forms due to the assumptions and simplifications that can be carried out to render the equation 

suitable for the required application and analytically solvable if possible. In most forms the 

dependent variable is the angular neutron flux in [#/cm2 /sterad/ MeV/sec] 

         t

Leakage rate density External source generation rateTotal Collision raterate of change
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

 

     (2.1) 

where   is the angular neutron flux [neutrons cm-2 sec-1 sterad-1 MeV-1], and 
f  are the 

macroscopic total and fission cross sections, respectively in [cm-1]; v is the average neutrons 

speed in [cm sec-1];   is the average number of neutrons produced per fission reaction. The 

angular variable ˆ v

v
   is a unit vector in the direction of the neutron travel and r is the 

position vector of the neutron.   is the fission spectrum and finally s  is the double differential 

macroscopic scattering cross section in energy and direction.  

It is noteworthy that eq. (2.1) can only be analytically solved for a small number of 

idealistic scenarios which are considerably different from real reactor problems. The Boltzmann 

equation if a nonlinear integro-differential equation which must be solved in tandem with 
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another equation, that describes the change in various materials concentrations, assumed to be 

input to the Boltzmann equation. For example, the macroscopic cross sections depend on the 

number densities, i.e., isotopic concentrations. Number densities are calculated using the 

Bateman equation which is a system of ordinary differential equations that are used to update the 

nuclei concentrations based on their respective production and loss terms. The production and 

loss terms depend on the neutron flux which is calculated by the Boltzmann equation. To 

decouple the Boltzmann and Bateman equation, the quasi-static assumption is typically used, 

where the reactor core is assumed to operate at steady state for a short period of time during 

which the number densities are assumed constant to solve for the flux; then the flux is used to 

calculate the production and loss rates for the various nuclei which are used to update the nuclei 

via the Bateman equation.  

Given the steady-state assumption, the Boltzmann equation is assumed to have a solution, 

which is only possible if the reactor is critical. To overcome this, the k-eigenvalue is introduced 

as a knob that determines the deviation from criticality. The designers can change the various 

model features to ensure k is as close to 1.0 as possible throughout the core life. Eq. (2.1) can 

then be written as:      

         
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 
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 (2.2) 

here the k-eigenvalue is the multiplication factor. 

The next obstacle facing practitioners is the energy dependency of each term in the 

equation; cross sections trends show a rather complicated dependence on neutron energy. To 
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render numerical solutions, the energy range is split over multiple ranges, where the cross-

section is assumed constant over each range. These ranges are called neutron groups, and the 

corresponding constant values are referred to as group cross-sections. In the group 

representation, the Boltzmann equation may be re-written as: 

         
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          (2.3) 

This equation is achieved by integrating eq. (2.2) w.r.t to energy over the gth energy group (i.e., 

1g

g

E

E

dE



  ) where Ng is the total number of groups in the selected energy structure which is 

dictated by the required accuracy. The figure below shows the continuous cross-section and the 

group cross-sections which are piecewise constants. The primary challenge of reactor physics 

calculations is the ability to calculate the group cross-sections in a manner that preserves the 

reaction rates and the multiplication factor. 

Fig. 2-3. Cross section discretization over energy. (Yoshiaki Oka et. al.) 
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2.1.2 Multi-group Cross-section Generation 

In this step, the pointwise cross-sections are collapsed into a multi-group structure using 

assumed flux shapes. This structure is decided based on an educated trial and error relying on 

expert judgment attempting to resolve all aspects of the flux spectrum, expected to affect the 

integral quantities of interest such as eigenvalue, reaction rates, etc. 

The uncertainties of the multi-group cross-sections can be estimated by propagating the 

uncertainties of the nuclear reaction model parameters using the standard sandwich relationship. 

The multi-group cross-sections contain essentially two different sources of uncertainties, one 

originating from the nuclear reaction parameters used to construct the continuous cross-sections, 

and the other from the assumed flux shape. Most tools account only for the first source of 

uncertainty (assuming linearity). Whereas the flux shape uncertainty is difficult to estimate 

because the real flux shape is unknown a priori. Therefore, assumed flux shape uncertainty must 

be treated as a source of modeling uncertainty. To estimate this source, one must be able to 

compare the predictions against a high fidelity model that directly uses the continuous cross-

sections, i.e., without any collapsing. The discrepancies between the predictions of the low and 

high fidelity models can be used estimate the modeling bias, which has to be repeated to take 

into account its dependence on other modeling conditions, such as composition, temperature, 

etc., i.e., control parameters. The group averaged cross sections are computed as follows: 

   
4

ˆ ˆ, ,E r E d


                                                           (2.4) 
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where x can be total, fission or absorption reaction. 
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2.1.3 Lattice Cell Calculation 

A lattice is a 2D slice of a fuel assembly, where the Boltzmann equation is solved using a 

large number of energy groups. The solution obtained for the flux is used to reduce the 

dimensionality of the cross-sections from many groups down to few groups, and averaged over 
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the entire lattice. The few-group cross-sections are subsequently used in core-wide calculations 

which are 3D models of the entire reactor core. The goal here is to model each assembly as a 

group of axial nodes, where each node is represented in core-wide calculations as a uniform 

region with few-group cross-sections. This requires the ability to smear all the energy and spatial 

dependence of the cross-sections at the lattice level prior to entering core-wide calculations. This 

smearing process is referred to as homogenization and is carried out as follows. 

In this step, one calculates the few-group cross-sections for the cell lattices. These 

calculations must be repeated every time a new cell lattice design is introduced. Cell lattice 

calculations start with the multi-group cross-sections and calculate the few-group cross-sections 

for a wide range of core conditions. 

To provide an idea of the size of the data streams flowing through cell lattice 

calculations, consider a typical transport code that is used to calculate the few-group cross-

sections. The code is to be executed a number of times equal to NB x NC x NL times, 

where NB refers to the number of burnup steps, and NC is the number of branch cases required to 

functionalize cross-section dependence on core conditions such as fuel and coolant temperature, 

coolant voiding, boron content, etc., and NL is the number of cell lattice types in the core. To 

propagate uncertainties, one would need to repeat these model executions N times, which is in 

the order of few to several hundred. This results in in the order of 105 model executions which is 

prohibitive in practical applications. 

Further, if one is interested in identifying the dominant contributors to the propagated 

uncertainties via an SA, one needs to execute the solver a number of times that is proportional to 

the number of model parameters. In this case, the parameters represent the multi-group cross-
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sections. This increases the number of required code runs to be in the order of 106 to 109 

executions, which is overwhelmingly high despite the expected increase in computer power. 

In this step, two sources of uncertainties are introduced, one from the multi-group cross-sections 

propagated from the previous step, and the other resulting from the modeling assumptions, such 

as the use of reflective boundary conditions, the use of a deterministic transport solver, and the 

use of multi-group instead of continuous cross-sections. The first source is again straightforward 

to account for. The computational cost becomes impractical when sensitivity information is 

required, i.e., to understand the contribution of the individual multi-group cross-sections on the 

propagated few-group uncertainties. 

The second source depends on the modeling decisions taken and therefore must be 

treated as a source of modeling errors. First, regarding the use of deterministic transport solver 

and multi-group cross-sections, this source could be identified by comparing model predictions 

against a high fidelity continuous cross-section Monte Carlo model. The second source is more 

difficult to account for because it depends on the type of neighboring bundles in the reactor core. 

Finally, similar to the previous step, the correlations between the multi-group 

uncertainties and the modeling uncertainties (resulting from the transport model, multi-group 

cross-sections, and neighbors’ approximations) are to be investigated. 

This step can be accomplished through two sub-steps: Homogenization and Few-group Cross-

section generation. 

2.1.3.1 Homogenization. In this step, microscopic cross sections and number densities 

are averaged such that different mixtures of different materials are assumed to be a single 

homogenized mixture occupying the whole volume. This can be mathematically expressed as 

follows: 
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Then cross sections can be computed such that: 
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Similar trend can be applied to the number densities: 
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2.1.3.2 Few-Group Cross-section Generation. The homogenized values can then be 

used to prepare for the core calculations by collapsing the energies into a coarser structure. This 

will render the core calculations feasible with an acceptable error. This can be achieved using a 

similar procedure based on the conservation of reaction rates as follows: 
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where NG<<Ng. This can be used in core calculation to speed it out in addition to some 

acceleration algorithms such as the coarse mesh finite difference acceleration (CMFD) that will 

not be in the scope of this report. 

2.1.4 Downstream Core-wide Calculations 

The last stage involves the calculation of core-wide power distribution during steady state and 

transient conditions starting with the few-group cross-section data. The number of few-group 

cross-sections is equal to NFG x NB x NC x NL where NFG is the number of few-group cross-

sections generated per a single transport model execution, which is in the order of 10, 

representing the thermal and fast absorption cross-sections, transport cross-section, fission cross-

sections, prompt neutron yield, and energy release, and Xe and Sm fast and thermal absorption 

cross-sections. If macroscopic depletion model for core calculations is used, the total number of 

few-group cross-sections is in the order of 104. If microscopic depletion models are used, this 

number is scaled by the number of nuclides tracked at the core level to account for the individual 

nuclides’ cross-sections. 

The sources of uncertainties in core-wide calculations include, uncertainties from the 

few-group cross-sections; uncertainties from the radiation transport model employed (e.g., nodal 

diffusion theory assumptions, and two energy-group cross-section representation); and 

uncertainties from non-neutronic models, e.g., thermal-hydraulics models, and their associated 

correlations used to describe the transfer of the heat from the fuel to the coolant, and the 

corresponding feedback into neutronics calculations, e.g., fuel temperature feedback, coolant and 

moderator temperature and density feedbacks; and finally any uncertainties from the control 
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parameters such as the lattice dimensions, fuel composition, flow rates, inlet coolant 

temperatures, etc. 

The first source, i.e., few-group cross-section uncertainties, can be treated using a 

standard UQ. The second source, i.e., the radiation transport model, can be estimated using the 

UQ methodology via core-wide Monte Carlo models. 

This concludes the main flow of many neutronics codes, for more details reader can consult one 

of the codes manuals such as SCALE, POSEIDON, and CRANE [49-51]. 
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CHAPTER THREE 

REDUCED ORDER MODELING 

3.1 Introduction 

Reduced Order Modeling (ROM) is sought to render computationally intensive tasks 

such as design optimization, UQ [3, 8, 53-55], SA [58-64] and DA [65-70] practically feasible 

for real-world engineering models. ROM leverages an interesting property of most complex 

models that is their associated input parameters and/or responses of interest live in low-

dimensional manifolds. This occurs because although the physics models may be general 

enough, the engineering application introduces many constraints which result in introducing 

many correlations which reduce the effective dimensionality of the system. The reduction can, 

therefore, be introduced at the various model interfaces. For example, one can reduce the 

dimensionality of the parameter space which allows one reduce the computational cost 

associated with investigative studies that attempt to identify the key parameters. The reduction 

can also be introduced at the state space, which could be leveraged to reduce the computational 

cost required to obtain numerical solutions for the state. The reduction can also be applied to the 

responses of interest, especially when the responses represent distributions over the entire phase 

space. Depending on where the reduction is applied, different methods have been developed 

which are discussed in this chapter. Moreover, depending on how much reduction is introduced, 

the associated reduction errors are calculated and upper-bounded using rigorous methods. In the 

next section, a quick literature review is deducted then the algorithms used are shown.  
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3.2 Literature Review 

As discussed in the introductory chapter, linear dimensionality reduction techniques have 

been employed by analysts to reduce the dimensionality of multi-dimensional data for over a 

century. In the past 15 years, interest in these techniques has been revived to support the surge 

witnessed in the area of predictive modeling, where high fidelity models utilizing the cheap and 

abundant computer power are sought to provide a better understanding of complex systems 

behavior such as nuclear reactors. In 2004, Abdel-Khalik [52] presented the idea of LDR under 

the name of efficient subspace methods (ESM), where the subspaces represent lower 

dimensional manifolds onto which the model variables are projected. Later, the terminology of 

‘active subspaces’ was adopted by other researchers such as Russi in 2010 [54], Constantine in 

2012 [56], and Webster in 2012 [57], and Abdel-Khalik in 2010 [58, 59], emulating the language 

of active constraints from optimization theory. The notion of active implies that variables 

variations along the subspaces impact the model behavior, whereas variations over the 

orthogonal complements, i.e., the “inactive”, as called by Abdel-Khalik in 2010, or “passive”, as 

called by Webster in 2012, subspaces, have negligible impact on the model behavior as measured 

in terms of a number of user-selected quantities of interest. 

Since then a lot of work on LDR has appeared under the name of subspace methods or 

active subspace methods. One can also trace the use of this terminology to the work by Erkki Oja 

in 1983 on pattern recognition [72] who started at the Institute of Physiology at the University of 

Finland exploring how the brain works, studying the neurons was the natural entrance for the 

machine learning and artificial intelligence world. In 1982 he managed to simplify the neuron 

model as a principal component analyzer, a year later he collected his linear methods in a book 
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called ‘subspace methods of pattern recognition’ where he included rigorous mathematics along 

with interesting engineering applications for subspace methods. 

  Notice that in principle one can find an infinite number of active subspaces that meet a 

user-defined present tolerance, which bounds the discrepancies between the original functions 

predictions and the reduced function predictions. The goal is to find a subspace that is not 

necessarily unique, with a very small size rx to capture the dominant parameter variations. In our 

work, we show that one can find an active subspace with slightly larger size in a computationally 

efficient manner that outperforms existing algorithms attempting to find the smallest possible 

active subspace. This is possible using our proposed multi-level ROM strategy which employs 

approximate models, i.e., models of lower fidelity, or models constrained to sub-domains of the 

overall problem domain, to obtain an approximation for the active subspace.   

The remaining sections discuss how the active subspaces are extracted. Although a great 

number of algorithms have been proposed by various researchers, one could argue that all 

methods rely on one of two essential ideas. The first idea employs randomized snapshots of the 

forward model simulations to identify an active subspace for the model output responses or state 

variables. In the second idea, snapshots of the gradient of the model responses with respect to its 

input parameters are used to identify an active subspace for the model parameters. Hybridization 

of these two techniques allows one to reduce the dimensionality of multi-physics models, 

wherein the input to one physics model is produced as an output by a pre-processor physics 

model [71].  
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3.3 Reduction Algorithms 

This section is dedicated to providing a comprehensive overview of the theories and 

algorithms that form the basis for our rendition of reduced order modeling to general nonlinear 

models. In particular, the next 3 subsections will cover the following three subjects: identifying 

the active input subspace for a scalar valued function, identifying the active input subspace for a 

vector-valued function, and finally identifying the active response subspace algorithm [73].    

3.3.1 Active Input Subspace Identification Algorithm (AISIA) for a scalar-valued 

function: 

Let : nf   be a scalar-valued nonlinear function that maps an n-dimensional input 

vector of model parameters such as cross section into a single response such as the effective 

multiplication factor keff. The goal is to determine the important directions in the parameter 

space, i.e., directions along which a perturbation in the model parameters will cause a noticeable 

impact on the response of interest. Notice that if the model is linear, there is only one such 

direction, that’s the gradient of f with respect to the model parameters. For general nonlinear 

models, however, there could be as many as n directions that affect the response. The goal of the 

reduction is to identify rx directions that capture the response variations to a given preset 

tolerance .  Ideally, rx should be much less than n, the nominal dimension of the input 

parameter space. The subspace forming the span of the rx directions is referred to as the active 

subspace  , ,1
: ;

xr n

act x i x ii
span u u


  , meaning that the original feature x can be written as the 

sum of an active variable and a non-active one as follows: 



www.manaraa.com

 

  34 

   
 

 

       

 variable  variable

r T

r n r r r T n r n r TxT

x x x x x x x xn r T

x active inactive

x x x x x
  



 
     
 

  

U
U U U U U U U U

U
 

where 
  x
r n r

x


U is the matrix whose orthonormal columns span the active subspace, or in other 

words: The active subspace is the range of 
 r

xU  , 
  r

act x U . The superscript indicates that 

the new attribute    r r

xx x U  is a reduced input vector due to a linear projection of the original 

feature x onto the active subspace. The matrix 
 r

xU  contains rx columns which span the active 

input subspace.  

One may visualize this considering a two-dimensional function f that is intrinsically one-

dimensional (i.e., i1D) [74] such that: 

      1 2 1

T Tf x f x x g u x  ; 

Then the Fourier transform of such a function will be: 

      1 2 1 1

T TF w G u w u u w I  

where F, G are the Fourier transforms of  f and g respectively. As follows: 

           1 1 2 2

2

2 2

1 2 1 2 1 2{ , } ,
Ti w x i w x w x

f x x F w e f x dx e f x x dx dx
 

 
  

 

      

       2
{ } ;

i wx
g x G w e g x dx








    
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and 
1

Tx u x , 
1

Tw u w   are the reduced variables in both the original and the frequency domains. 

With   being the Dirac-delta function, the Fourier transform for f states that the function 

vanishes in the directions normal to 1u  and changes governed by the function G in the directions 

parallel to 1u . This can be generalized to the case where the nominal dimension is n and the 

intrinsic dimensionality is xr  and     r T

xf x g x U . In this case, the variation of the function in 

the directions parallel to the subspace spanned by the xr orthonormal columns of  
 r

xU  significant 

when compared to the negligible impact on  f  caused by an input vector that is perpendicular to 

that subspace. The identification of such active subspaces is accomplished using a gradient-based 

algorithm that constructs an active subspace in the input parameter space employing the adjoint 

model to calculate the first order derivatives of a general pseudo response with respect to input 

parameters. The pseudo-response is not a physical quantity but a mathematical abstraction 

representing a random linear combination of all model responses. For a justification of the use of 

pseudo-responses, the reader may consult section 3.3.2.1. The algorithm may be described by the 

following steps:  

  Inputs: 
n

refx  is the reference input vector (i.e., cross sections). 

     x  is the relative perturbation from the reference value. 

    : nf   is the forward model of interest. 

    :adj nf   is the adjoint model (needed to compute the sensitivities). 

1. Set     : ; 1 1n

ref refx x x x x x x        is an n-dimensional 

hyperrectangle.  
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2. Generate k random realization   , ,1
; [ , ]

k n

i i ref i ref ii
x x x x x x 


   . 

3. Initialize: []J . 

4. for i = 1 to k  

5.  i iy f x  

6.    
T

i ij x y   

7.   [ , ]ij xJ J . 

8.    , ,x x x svd U V J . 

9. 
      

 

:,1: :,1:T

test x x test

test

f f i i

f




X U U X
E

X
. 

10. b   Construct an error bound as shown in section (4.3.4). 

11. If b user     

12. xr i  . 

13. 
   :,1:
r

x x iU U . 

14.  Return  

15. end if 

16. end for 

17. 
 

,
r

x x xr k U U  (no reduction occurred). 
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3.3.2 Active Input Subspace Identification Algorithm (AISIA) for Vecor-valued 

functions:. 

For : n mf  , the above algorithm can be intuitively repeated for each component in 

the response vector and hence find an individual active subspace for each of the m-components 

as presented by Russi (2010). This renders the process impractical for large number of responses 

and hence motivates for the pseudo-response trick. 

3.3.2.1 The Pseudo-response Trick: 

Earlier work [73] has shown that vector-valued functions can be tackled using the pseudo 

response which is a non-physical quantity and hence find an individual active subspace for each 

of the m-components. This starts to be impractical right after m exceeds 10. In a typical reactor 

physics application, m might be in the order (104-106) which motivates the need for a way to get 

around this obstacle and render the algorithm feasible even for huge response vectors. 

Mathematically, the pseudo response is just a random linear combination of the response 

components  pseudo T

i iR w y x  where w is the weighting vector. This can be analogous to what is 

done in the input perturbation process since a random input perturbation reflects a movement in 

random directions in the input space, in the adjoint world a similar trend is to randomly perturb 

the response vector which can be accomplished via a random linear combination of the response 

vector. 

In [73] the authors showed that one can extract the active subspace using the sensitivity 

profile of the pseudo response w.r.t. the input parameters. The procedure goes as follows:  

 Inputs: 
n

refx  is the reference input vector (i.e., cross sections). 

              x  is the relative perturbation from the reference value. 
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 : n mf   is the forward model of interest. 

 :adj n mf   is the adjoint model (needed to compute the sensitivities). 

1. Set     : ; 1 1n

ref refx x x x x x x        is an n-dimensional 

hyperrectangle.  

2. Generate k random realization   , ,1
; [ , ]

k n

i i ref j ref ji
x x x x x x 


   . 

3. Initialize: []J . 

4. for i = 1 to k  

5.  i iy f x  

6. 
pseudo T

i iR w y  , where w are some random weights. 

7.    
T

pseudo

i ij x R   [using the adjoint model]. 

8.   [ , ]ij xJ J . 

9.    , ,x x x svd U V J . 

10. 
      

 

:,1: :,1:T

test x x test

test

f f i i

f




X U U X
E

X
. 

11. b   Construct an error bound as shown in section (4.3.4). 

12. If b user     

13. xr i  . 

14. 
   :,1:
r

x x iU U . 

15.  Return  
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16. end if 

17. end for 

18. 
 

,
r

x x xr k U U  (no reduction occurred). 

If no reduction occurred within the first k runs, k is gradually increased until either the error 

criterion is satisfied or k reaches n which states that the model is non-reducable.  Fig. 3-1. 

illustrates the procedure of active parameter subspace identification. 

 

 

 

 

 

Fig. 3-1. Active Parameter Subspace Identification. 

Notice that discarding components in the parameter space will give rise to errors in the 

response space even if no reduction in the response space is rendered. Estimating the total 

response error resulting from reduction at each or both parameter and response levels will be 

discussed in the next chapter. 
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The proposed error bound is based on a theorem developed in the statistical and applied 

mathematical communities [75, 76]; they are introduced below for the sake of a complete 

discussion. The interested readers may consult the cited references for more details. 

3.3.3 Active Response Subspace Identification Algorithm (ARSIA): 

Unlike the algorithm in the previous subsection this algorithm extracts the active 

subspace of the response of interest and reduces the dimensionality using forward model 

snapshots without the need to calculate derivatives (gradient-free). Consider the reducible model 

under inspection to be described by the model  y f x ; the algorithm proceeds as follows: 

Inputs: 
n

refx  is the reference input vector (i.e., cross sections). 

   x  is the relative perturbation from the reference value. 

   : n mf   is the forward model of interest 

1. Set     : ; 1 1n

ref refx x x x x x x        is an n-dimensional 

hyperrectangle.  

2. Set   : ;m

l uy y f x y y y      is an m-dimensional hyperrectangle. 

3. Generate k random realization   , ,1
; [ , ]

k n

i i ref j ref ji
x x x x x x 


   . 

4. Initialize: []Y . 

5. for j = 1 to k  

6.  j jy f x  

7.  [ , ]jf xY Y . 



www.manaraa.com

 

  41 

8.  , ,y y y svd   U V Y . 

9.    :,1: :,1:T

y yj j E Y U U Y . 

10. 
           

 

,: ,1: ,1: ,:
; 1,

,:

r r T

y y

i

i i j i j i
err i m

i


 

Y U U Y

Y
 

11. 
y

b   Construct an error bound as will be shown in chapter 4. 

12. If 
y

b user     

13. yr j  . 

14. 
   :,1:
r

y y jU U . 

15.  Return  

16. end if 

17. end for 

18. 
 

,
r

y y yr k U U  (no reduction occurred). 

Note that selecting the dimensionality of the reduced space for the responses to be yr , such 

that  min ,yr m k implies that the active subspace is identified as the range of the first yr   

columns of the matrix yU , denoted by 
 r

yU .The figure below shows a schematic layout of the 

Gradient-free algorithm. 
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Fig. 3-2. Active Response Subspace Identification 

 

 

 

 

 

 

 

 

Fig. 3-3. Active Parameter and response Subspaces Identification. 
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CHAPTER FOUR 

PROBABILISTIC ERROR BOUNDS 

4.1 Introduction 

It is mandatory to equip ROM techniques with an error analysis tool to credibly defend the  

predictions of the reduced model. This tool enables the user to decide if she needs to increase the 

size of the active subspace to suit the application of the reduced model over the range of 

operational conditions of interest. Our goal is to derive a general error analysis for a general 

multi-physics model. To this end, we first develop the error analysis for a single physics model 

due to a single reduction at a single interface, e.g., parameter space, response space, etc., 

followed by an error analysis for a single physics model at two interfaces, e.g., reduction in both 

parameter and response spaces. Finally, we extend the analysis to cover multiple interfaces for 

various physics models.  

 The backbone of the error analysis is Dixon’s theory [1983] which will be explained in 

details in the next section just after discussing the literature review of related work. The direct 

application of this theory typically results in a very conservative error bound; methods to relax 

this level of conservatism is discussed in the following subsection. The third subsection describes 

the quantification of reduction errors at multiple interfaces under a single and multi-physics 

settings.  
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4.2 Literature Review 

Although a great deal of research has been invested in the development of error bounds, 

for realistic models, these bounds tend to be extremely conservative which diminishes the utility 

of the reduced model, and makes its construction computationally taxing. This section provides a 

short overview of the state-of-the-art methods used to quantify reduction errors and highlight 

some of their challenges.  

The most notable work on error quantification resulting from reduction has been done in 

the POD community. Scientists have invested in different POD error estimation techniques, few 

of them have even performed nonlinear enhancements by hybridizing with the Discrete 

Empirical Interpolation Method (DEIM). A quick overview about the POD error estimation will 

be conducted followed by introducing the Small-Sample Statistical Estimation method which 

will be compared against the proposed binomial estimator. Rathinam and Petzold provided a 

priori error bound for POD reduced-order model and studied the effect of small perturbations on 

the active subspaces. Petzold, Homescu, and Serban combined error estimation using adjoint 

methods with small sample statistical condition estimation to construct error bounds for POD. 

Kunisch and Volkwein (2001) developed priori error estimates for Galerkin POD for parabolic 

PDE’s. Haasdonk and Ohlberger (2005) developed a posteriori error estimate for the state, and 

response variables, More publications on POD and POD error estimates can be found in [77-88]. 

 Next the most intuitive error analysis tool is that for the POD methods, since an 

analytically proved expression is provided. Next, a quick overview of the POD method and the 

corresponding error analysis is provided, followed by the difference between this approach and 

the probabilistic error bound presented in this work. 
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Consider a physics model:  ; ,n my f x x y     and assume that the active parameter 

subspace , ,

1

pseudo pseudoR R
span

x x
x xrx

 
   

  
  

  

 with dim xr n  , and the active 

response subspace 
1{ , , }

y

m

rspan y y   with dim yr m  , 
       

,
r r T r r T

x x x y y y P U U P U U  

are projector operators onto the active parameter and response subspaces respectively, and 

   
, yx

m rr rn r

x y


 U U  are the matrices containing the orthonormal columns of each subspace. 

Then the error in parameters due to parameter reduction and the error in response due to response 

reduction can be computed respectively as follows in 4.1 and 4.2: 

 
2

, , ,

1 1 1

x

x

rk k
T

x i i x j x j x i

i j i r

e x x u u 
   

                                         (4.1) 

Where 
,x ju   is the jth column of

 r

xU   (i.e., the jth basis of the spanning set of the parameter active 

subspace) and 
2

, ,x i x i    is the ith POD eigenvalue (the square of the ith singular value of the 

sensitivity matrix G). Similarly, the error in response will have the form: 

 
2

y, y, y,

1 1 1

x

y

rk k
T

y i i j j i

i j i r

e y y u u 
   

                                    (4.2) 

Again, 
,y ju is the jth column of 

 r

yU  (i.e., the jth basis of the spanning set of the parameter active 

subspace) and 
2

y, y,i i   is the ith POD eigenvalue (the square of the ith singular value of the 

aggregated responses matrix Y ). 
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The previous error metrics enable the analyst to compute the errors at an interface due to 

a reduction at that same interface (i.e., error in x due to a reduction in x or error in y due to 

reduction in y), but what if she needed to compute the error in response due to a reduction in 

parameters?  

Furthermore, the previous metrics do not say anything about future runs, and hence, if the 

input parameters are perturbed, then the error must be recomputed. We need to find an error 

bound that guarantees that if x is perturbed within the same density function, the error due to the 

projection will not exceed the predicted bound. This motivates the probabilistic framework 

discussed in section 4.2.3.   

The previous two questions prompted the construction of error metrics and bounds which 

will be discussing in the following subsection. 

4.2.1   Subspace Containment: 

One intuitive metric for error estimation is the subspace containment measure which was 

introduced by Sastry and Varaiya in 1981, analyzed in [94], then used later by Russi 2010 [54] 

on interesting engineering examples. Suppose  is the subspace spanning parameter space 
n
, 

where 
 r

 is the reduced subspace capturing all influential directions in the sense that variations 

in these directions will lead to a significant impact on responses of interest. The measure of 

containment is then defined as: 

      
, :

r rT

x x xm  I U U U                                  (4.3) 
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where xU  contains the orthonormal columns spanning  , while 
 r

xU   aggregates the 

orthonormal columns forming the basis for the reduced active subspace 
 r

. This measure is 

bounded below by 0 revealing that the whole 
 r
 and bounded above by 1 reflecting that 

 r

xU  contains vectors that are perpendicular to . 

The former metric gains its usefulness from its ability to compare subspaces and to reflect how 

much information in the first subspace is not contained in the second one. 

4.2.2   Angle between Subspaces: 

Another natural metric is to compute the angle between subspaces which can easily be 

computed from: 

 

   

,
sin r

r r TT

x x x x  U U U U                                            (4.4) 

This is upper bounded by Holodnak, Ipsen and Smith in 2015 with a high probability as follows: 

  

    1

,
1

4
sin 1r

x x

r r TT

x x x x f

r r

p
 


   

  
     

  

U U U U                       (4.5) 

where 
1 1xr
  

 are the first rx+1 singular values of exact covariance matrix C: 

      
n

T T

x x xf x f x x dx    C U U with  x  being the probability distribution function 

of x, and assuming a big gap   occurring at the cutoff location (intrinsic dimensionality xr  ) such 

that 
1

1

0 1
4

x xr r 





    and   is a user-defined failure probability, provided that enough 
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samples are drawn to reach that probability. For more details about the sufficient number of 

samples, proof, and algorithm, the reader may consult [95]. 

The former two metrics gain their usefulness from the providing a methodology to 

distinguish between different subspaces and pick the most informative subspace in the sense that 

they share most important directions. This angle between subspaces will serve as a basis to 

justify picking some low-fidelity models and use them to extract subspaces spanning parameter 

spaces of another high fidelity model, this method, known as MLROM will be discussed in 

chapter 5. 

While mathematically sound, these metrics suffer from three challenges. First, they 

require knowledge of the exact subspace, to be further reduced by ROM techniques, which is not 

always possible, especially when the exact subspace requires many code executions involving 

high fidelity computationally taxing models. Second, errors, as measured in terms of projection 

operators or angles between subspaces, do not directly correlate with responses of interest which 

represent the object of the reduction. Third, these metrics do not provide prior error bounds, 

meaning that they do not guarantee the reduction error for other model executions that were not 

used to render the reduction. For these reasons, other methods that provide probabilistic error 

bounds are discussed next. 

4.2.3   Small-Sample Statistical Estimation [1994]: 

The idea of Small-Sample norm estimation presented by Kenny and Laub aimed to 

accurately gauge general functions sensitivities by computing the effect of random perturbations 

at the points of function evaluations. The fact that it is a transpose-free method motivated its use 

in various problems in contrast to the commonly used yet limited power method since the latter 
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requires the access to the implicit Fréchet derivatives. This flexibility enabled the Small-Sample 

Statistical condition Estimation to be used with mappings between different dimensions 

providing the ability to construct component-wise estimates as well. Several estimators were 

presented, and the probability that these estimators would lie within a factor 1   from the actual 

norm was analytically computed with deep roots in Dixon’s theory that will be discussed in the 

next section. In this section two of these estimators are illustrated, the averaged statistical 

estimator and the subspace statistical estimator as well as the associated probabilities which will 

be compared to the proposed probabilistic bound. 

Let nx  be the input parameter for a nonlinear vector valued function : n mf  

and let 
m NE be the error matrix due to active subspace reduction such that each row of E 

demonstrates the error in a single response of the m responses where each column represents a 

single run from the N random runs such that: 
          

 

r r T r r T

y y x xf f

f




X U U U U X
E

X
 and 

m NX   are the N random input parameters used to estimate the error norm. And hence 

1 N

je   is the jth row of E (i.e., the error in the jth response ). Next let Nw  be iid sampled 

from a known distribution w . And with s being a positive integer representing the number 

of w vectors used, then the probabilistic statement sought will look like:  

   1 , ,
j

j f

e
estimator s e p s 



  
    

  

                              (4.6) 

4.2.3.1   Averaged Statistical Estimator  s  : 
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In this method the  ' 0,1 ; 1,2,...,
N

iw s i s    over the unit hypersphere SN-1 as shown 

in details in Dixon’s theory discussion, in this case, the estimator is: 

 
     1 2 s

j j j

n

e w e w e w
s

sE


  
                                             (4.7) 

where En is computed from: 

 

 

 

 

1                               1

2                            2

1.3.5... 2
           is odd>2

2.4.6... 1

2.4.6... 22
       is even>2

1.3.5... 1

n

n

n

n
E n

n

n
n

n












 





 

                                (4.8) 

and with few manipulations with the probability distribution function that can be found in [96-

96], the probabilistic statement can be written as follows: 

   
1

1

1 2 1 2
1 ; max 1, !

!

s

j
s

j s

e s s
s e O s

s
  

   





        
           

      

           (4.9) 

4.2.3.2 Subspace Statistical Estimator  s  : 

The only difference here is that the s random vectors (i.e., w’s) are orthogonalized via 

Gram-Schmidt, QR decomposition or SVD decomposition to construct an orthonormal basis for 

an s-dimensional subspace that has been randomly selected from all the s-dimensional subspaces 

from 
N

. Then the subspace estimator is taken to be directly proportional to the norm of the 

projection of vector under inspection (i.e., 
je ) onto the span of w’s such that: 
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       
2 2 2

1 2 ss
j j j

N

E
s e w e w e w

E
                                     (4.10) 

and hence, the probabilistic statement can be recast as: 

  , ,

j N N
j N s N s

s s

e E E
s e g g

E E


 

 

      
        

     

;                            (4.11) 

where  

 ,

0                                                                                                         for 0

1                                                                                

N sg









   
 

 
 

 

   
 

 
 

 

 
 

2 3 /2
2 2 2

1
2 3 /2

2 2 2

2 /2
2

                          for 1

4 !!1 1.3
1 1 1 1           for 1,  

2 2.4 3 !!

4 !!2 sin ( ) 2
1 1 1  for 1,   

3 3 !!

1 1          

N

N

N

N
s odd N

N

N
s even N

N



   


   

 












 
          

 
          

 

 
 

   
 

 

 
 

   

2
/2

2

, 2

2

, 2

                                                                         for 2,

2 !!
1                                         for  2,

2 !! !!

1 !! E

2 !! !!

s
N s

N s

s

N

N s

s

N
g even s

s N s

N
g

s N s


 
















  

 




 
 

 /221                                        for  2,
N s

odd s






















 


 

(4.12) 

where the double factorial symbol (!!) is the skip factorial (i.e.,    0!! 2 4 ;n n n n n   and 

0 1n   if n is odd and 2 if n is even). For more details about these methods, the reader may 

consult the formerly mentioned references [96-97]. The difference between the Small-Sample 

Statistical Estimation and the proposed methodology can be summarized as: 
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 w is sampled from a binomial distribution with a user-specified probability of failure. 

 The multiplier (factor)   is computed numerically for a given probability (R.H.S). 

 The estimator    

1,2,
max

i

j
i s

b s e w


 . And hence the probabilistic statement can be written 

as: 

   1
s

j fe b s p                                                        (4.13)   

Before discussing more details about this probabilistic norm estimator, the root of all these 

theories namely Dixon’s theory is to be discussed.  

4.3 Supporting Theories 

 

4.3.1   Dixon’s Theory [1983]: 

 Probabilistic error bounds were first introduced by Dixon (1983) when he estimated the 

largest (and/or the smallest) eigenvalue and hence the condition number of a real positive 

definite matrix A [75, 76]. His theory can be regarded as the cornerstone of probabilistic error 

bounds framework. This theory finds an estimate for the upper bound of the 2-norm of a matrix 

by multiplying it with few random vectors sampled from a known distribution. The probability 

of the actual norm being less than the estimated upper bound depends on the distribution from 

which the random vectors are sampled. Several attempts to make use and develop this theory can 

be found in [89-93]. These methods need a solid background in linear algebra and numerical 

methods, the reader may consult [94-100] for refreshing these topics. To get a better grip on this 

theory and hence make the required modification to render our bound more realistic, the original 

theory will be explored.  
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Lemma. Let  1 2

T

Nz z z z ; 2N   , and 'iz s are iid  0,1  one can show that: 

 1,1iz

z
                                                         (4.14) 

2

2

1 1
,

2 2

iz N

z


 
  

 
                                                 (4.15) 

The previous lemma assures that if the individual components of a vector are sampled from a 

normal distribution, then the normalized version of this vector is distributed over a unit 

hypersphere whereas squaring each component makes the probability distribution a Beta 

function. This is necessary for the following theorem.  

Theorem. Let N NA  be a real positive definite matrix whose eigenvalues are 

1 2 0.N        

Let S:= | 1N Tw w w   be a unit hypersphere such that 2N   and   0,1iw  over S. And 

if >1   then: 

 1

2
1 .T T N

w w w w 
 

   A A                                           (4.16) 

Proof. Since A  is a real positive definite matrix, one can write that:  

,TA UDU  

where U  is orthogonal, and  1 .Ndiag  D  Let us expand w  using the same orthonormal 

basis:  
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1

.
n

i i

i

w wu w


  U  

Then: 

 
2

2 2

1 1

2 2

1 1 1

1

                                                 

T T T T T

N N

N

w

w w w w w w w w

w w

 

 



    

   

I I

A U U DU U D

  

So far we have proved the first inequality 1.
Tw w A .Next, we prove that 1  Tw w  A  or 

more precisely find the probability of this event being true since there are cases when this fails. 

 2 2

1 1 1 T

N Nw w w w       A  

This definitely occurs when 
2

1 1w   

 2 2 2

1 1 1

1 1
1 1w w w

 

   
        

   
 

 2
1

1

2

1
0

1
;

w
w f t dt



 
  

 
  

where  2
1w

f t  is the probability density function of 
2

1w  which is iid and ~  0,1  over 

S(normalized to 1  ). From lemma we know that: 

   2
1

1 3

2 2
1 1

, 1 ;  0 t 1
2 2

N

Nw

N
f t a t t

  
     

 
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where Na  is the normalization constant; 2

1 1 2

2 2

N

N

N
a

N 

 
 
  

   
    
   

 

 
1 1 3

2 2 2
1

0

1
1

N

Nw a t t dt



  
   

 
                                            (4.17) 

This integral can be analytically evaluated, but Dixon has chosen to find an upper-bound instead, 

which is larger than the actual probability. 

 
1 1 3

2 2 2
1

0

21 2
1

N
N

N

a N
w a t t dt

  

 
     

 
                            (4.18)                            

which means: 

 1

2
1T T N

w w w w 
 

   A A                                     (4.19) 

Corollary. If m NB  is a real matrix such that 
T T A LL B B  where 

TL B  is the Cholesky 

factor of A  and if 1 0N     are the singular values of B  (i.e. 
2

i i  ), then the previous 

theorem can be written as: 

  1

2
1

N
w w 

 
    B B B                                (4.20) 

Selecting 
2 2

N 


  
   

  
where >1  yields:  

12
1N w 




  

   
  

B B                                            (4.21) 
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4.3.1.1 Finding the Exact Probability for Rank-one Matrices: 

Note that the singular values being positive is an explicit condition mentioned in Dixon’s 

proof, yet it is important to test the performance of the theory for numerically singular matrices 

especially since it is most likely to be used to estimate the 2-norm of error matrices. To answer 

such a question let us give the proof a geometric nature and explore how a matrix with few 

significant singular values will behave. Let us write B as the sum of outer products: 

min{m, }

1

r N
T

i i i

i

u v




 B  

where r is the intrinsic rank of B; i  is the ith singular value of B, iu  and iv  are the 
thi  left and 

right singular vectors respectively. Then: 

 
min{m, }

1

r N
T

i i i

i

w u v w




 B  

But  T

iv w  is the component of w in the direction  . . i iv i e w  which is the cosine of the angle 

between w and iv  (remember that both w and iv  are unit vectors).  

       1 1 1 2 2 2

1

cos cos cos cos
r

i i i r r r

i

w u u u u       


   B  

and hence: 

    2 2 2 2 2 2 2

1 1 1 2 2cos ( ) cos ( )w         B B                    (4.22) 
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If the first term in the upper bound is greater than i  then definitely the bound is satisfied. This 

means that: 

    
 

   2 2
1 1

1 1
2 2 2

1 cos0 0

1
cos 1 1

x
w f t dt f t dt 


 



 
       

 
 B B         (4.23)  

This is the exact same result from Dixon’s proof [75] but looking at it as vector x being projected 

on v’s scaled by σ’s then rotated to u’s directions reveals that the probability predicted by the 

theory is much less than the actual probability for the following reasons: 

1. The actual integral of the complement event is replaced by an upper bound which is 

larger than the exact integral. 

2. The probability is computed based only on the first singular value: 

     
2 2 2 2 2 2 2

1 1 1 2 2

neglected

cos cosw      

  
       

    

B B                (4.24) 

In other words, there are cases where the first term is less than 
2

1  but the rest of the terms will 

compensate that. Those cases are not accounted for in the predicted probability. Which is another 

reason for making the predicted probability less than the actual one and hence the 

complementary probability greater than the actual one. We will compute the exact integral 

instead of an upper bound. We can pick B to be a rank-one matrix, which is the worst case 

scenario of singularity and then the bound will only be satisfied if the value of  2

1

1
cos .


   

So the final step would be to compute the analytic integral corresponding to this probability: 
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   
1 1 3

2 2

0
1 1

N

N

n

I

w a t t dt


   B B  

 
1 1 3

2 2

0
1

N

NI t t dt


   

Use the substitution: 

 

   

2

1

sin                             @ = 0 =0

1 1
2sin cos            @ = sin

t y t y

dt y y dy t y
 



 

 
    

 

 

 

1

sin
NI

y
     

1

3
1 2sin

2

0
cos 2 sin

N

y y




 
 
   

  
1

21
sin

0

cos

   2 cos

N

y dy

y dy




 
 
  

 

Using integration by parts:  

      

 

 

2

1 1

1 cos
1 1

sin sin
3 2 4

00
2 cos sin 2 sin cos

y

N N

NI y y y y dy 

 


   
           

   

 

2

1

3

1

1
sin

4

0

1 1
2 cos sin

                                     3 2 cos

                                                                     3 2 cos

N

N

N

I

N

N

I

N y dy

N



 









 
   

   
     

   

  

 



 
1 1

sin
2

0

NI

y dy

  
   

 

   

3

1

2

1 1
2 cos sin 3 3

N

N N NI N I N I
 







   
        

   
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3

1

2

1
2 cos sin

1 3

2 2

N

N N

N
I I

N N











   
         

 
 

 
3

1

2 1 02

12 3 1 2
;  2 and 2sin ;  .

2 2

N

N NN

N
I I N I I

N N



  







   
     

   
       (4.25) 

Finally, if the matrix-vector multiplication was repeated s times then the probabilities will be 

raised to s since these are independent events. 

                   
    

1,2,

2
max 1 1

s

si

N N
i s

N
w a I

 

 
      

 
B B                         (4.26) 

where 2; 1;N   usually 
2 2

= ;  =10N  


 
 
 

 and: 

2
;

1 1

2 2

N

N

a
N

 
 
 

   
    
   

 

 
3

22

12 3
  2;

2 2

N

N NN

N
I I N

N N









 
   

 
 

1

1 0

2 1
;  2sin .I I

 

  
   

 
 

This analytic integral gives a very close probability to the numerical tests when a rank-one 

matrix is used because all two sources of inaccuracy are eliminated. 

One intuitive question arises here if the error due to a reduction based on a specific 

dataset is bounded how can we guarantee that this will still hold for different input parameters? 

To answer this question we need to review the Tensor-free expansion which is needed to prove 
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that any other input parameter once constrained to the active subspace will produce an error that 

is necessarily less than the bound. 

4.3.2   Tensor-Free Expansion 

This expansion [73] is a generalized version of Taylor expansion that theoretically expands 

any Taylor expandable function in terms of arbitrary once-differentiable scalar functional basis 

as shown next. 

            

        

1 2

1 1 1 1 2 2

1 1 2

3

1 1 2 2 3 3

1 2 3

1 2 2

0

1 , 1

3 3 3

, , 1

                         

n n
T T T

i i i i i i

i i i

n
T T T

i i i i i i

i i i

R x R x x x x

x x x

     

     

 



      

   

 



                 (4.27) 

which can be written in a shorter form as: 

      
1 2

0

1 , , 1 1

k

j j

k

n k
k T

i i

k i i i j

R x R x x 


  

                                    (4.28) 

where nx  is the parameter vector,  ’s are the basis vectors and  ’s are the once-

differentiable basis functions. 

Next, we show that the m responses from a nonlinear function  f x  can be constrained to a 

subspace and hence can be upper-bounded. The individual components of the response vector  

can be written as: 

 [ ] , 1,2,p py f x p m   

where [ ]py is the pth component of the response vector y. Assuming that the functions  pf x are 

integrable everywhere in the parameter space, implying that there exist m functions zp such that: 
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 [ ] , 1,2,  .
p

p p

q

z
y f x p m l

x


   


                                      (4.29) 

Without loss of generality, we pick p q  and assume that the integrated functions zp are smooth 

and can be Taylor expanded and hence can be expanded using the tensor-free expansion as 

follows: 

          
1 2

1, 1, l, , , ,

1 , , 1

.. ..  
k

k

n
k T k T k T

p p p p l p k p k p

k i i i

z x x x x     


 

   

whose derivatives with respect to x are given by a vector: 

            

1

1

1, , , , , , ,

1 ,.. ., 1

 .. ..
l k l

l k

n
k T k T k T k

p p j p l p j p k p j p j p

k j j j

z x x x x      


 

    

This expansion was developed in support of gradient-based reduction algorithm described in 

section 3.2.2. The previous expression implies that the derivative at any point in the parameter 

space may be viewed as a linear combination of a number of  vectors. By randomly sampling 

the derivatives, one could identify a basis of reduced dimension that approximates the derivatives 

anywhere in the parameter space, and upper-bound the error resulting from the reduction.  

Next form a super vector that aggregates all the derivatives for all the zq functions as 

follows:  

    1

1 ....
T

TT mn

mg z x z x     
  
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Since one can find a basis in the parameter space that can upper-bound the construction error for 

each of the  qz x  vectors, one can find another super basis that upper bounds the construction 

error for the vector g. This was proved in earlier work using the idea of pseudo-response. 

 Now, design a matrix K such that: 

 1 ...m mn

m

 K K K  

where pK  is the null matrix except the pth diagonal element is given by: 1.0p pp
   K . This 

matrix is designed to pick the derivative of the function zp with respect to the pth vector in order 

to take advantage of Eq. (4.29): 

1

1

...

T

m

m

zz
g y

x x

 
  

  
K . 

This equation implies that given a subspace that constrains the vector g with the reduction error-

upper-bounded, one can find a subspace for the vector y, which also ensures that its associated 

reduction error is upper-bounded.  

4.3.3   Numerical Inspection of Different Distributions used to construct Error Bounds: 

The previous discussion gave rise to some important questions such as: what if the 

singular values of the matrix were close to each other? This means that the other singular values 

(that were neglected in the analysis) will render the bound much larger than the actual norm 

which will result in a non-realistic bound that can be orders of magnitudes off the actual norm. It 

is desirable that the probability of failure is very small and that the multiplier  (we will call it 

  from now on) is as close to 1 as possible. This means that the preferable distributions are those 
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that have a small area under the pdf curve from 0 to 
21 /  then a sharp increase from 

21 /  to 1. 

This is exactly the opposite case of both normal and uniform distributions which explains why 

these distributions result in a conservative error bound. The advantage of the normal distribution 

is that it allows one to calculate the bound analytically. One however can inspect other forms for 

the distributions and calculate the bound numerically as shown below [105, 106]: 

       
2

2
1

1/

1,2,
0

max 1 1 ( , )

s

si

fwi s
w pdf t dt p



 


 
     
 
 
B B                      (4.30) 

This allows one to compute the multiplier   for a general distribution and a user-defined 

probability. For illustration we pick s = 1 and probability of failure  , 0.1fp    then 

numerically search for   that makes the actual norm less than the estimated one in 90% of the 

cases. This is repeated for many distributions and the multiplier   is tabulated in table I. In 

practice, after deciding which distribution will be used and numerically computing the 

corresponding multiplier, the random matrix B will be replaced by the error matrix E which is a 

problem-dependent error operator.  
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Figures 4-1 through 4-3 depict the comparison between using the normal, uniform and 

binomial distributions with a probability of failure  , 0.1fp   . 

 

Fig. 4-1. Uniform Distribution. 

Fig. 4-2. Normal Distribution. 
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Fig. 4-3. Binomial Distribution 

 

The figures show that fixing the probability of failure gives the least multiplier   when 

sampling from the binomial distribution. Further, the same distribution results in a linear trend 

with narrow scatter around the 45-degree solid red line implying that for the failed instances the 

actual norm will be very close to the estimated one.    

 

4.3.4   Proposed Binomial Estimator b(s): 

It is instructive to question why binomial distribution, unlike the normal or uniform 

distributions as used by Dixon, Kenney, Laub, Gudmundsson, and others, exhibits this appealing 

behavior in which the estimated bound is very close to the true errors. We shed some light on 

this question in this section.  

It is undeniable that the Gaussian (i.e., normal) distribution is the most widely used 

distribution in many naturally and man-driven systems and has been well studied and 
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analytically explored by practitioners and scientists from various backgrounds. In addition, due 

to the central limit theorem and loosely speaking, the interaction between many distributions in 

most engineering problems can be well approximated by a Gaussian distribution. Another reason 

for using a Gaussian is the existence of the lemma discussed in section 4.3.1 which assures that 

the pdf required to compute an analytic form for the probabilistic statement is known:   

   
 

2
1

31
22

1 1
, 1

2 2

n

w

n
pdf t t t

 
   

 
.   

To mimic this work for the binomial distribution one needs to look at the distribution of the 

squared components of unit vectors drawn from a binomial distribution. This is carried out 

numerically revealing that the resulting distribution is also Gaussian with a mean and standard 

deviation that depends solely on N; the length of the random vector. If one fixes the lower bound 

of the probability of success 

 
22

2

1/

2

2
0

1
1

2

t

sp e dt







  
  
 
 
  in case of using a binomial 

distribution or  
 

21/ 31
22

0

1 1
N

sp t t dt

  
   
 
 
 in the case of using a Gaussian distributed random 

unit vector, it is easy to numerically determine the value of   for each case. 

This relation can be explored further by fitting a curve to predict the value of   at any N. This 

can be seen in figure 4-4.  
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Fig. 4-4. Multiplier Values vs. N. 

From the previous figure one can infer that the N can be modeled as a quadratic function in   for 

the Gaussian case i.e.,  
2

2 1 0

G G G G G GN a a a     and as a power function for the binomial case  

  2

1

Ba
B B BN a  from the observation that for 0.3fp   

B  decreases with N, where the 

superscripts G, B refers to Gaussian and Binomial Distributions respectively. This can be 

rewritten as:
 

 

2

10 1

2

2 2
2

;
24

GG G G
G

G G
G

aN a a

a aa



   . For the shown case, s=1 the Gaussian case gave 

the coefficients 
2 1 00.01545,  0.03226,  1.037.G G Ga a a    looking at these constants reveals that 

2

1
8G

G
N N

a
    this is consistent with Dixon’s theory when 1 0.9sp       and thus 

10   which means that the multiplier will be 
2

7.979N N


 . Whereas fitting the 

binomial case gave that 
1 1.1386 7Ba E   and 

2 64.7668Ba    or in other words, 

0.015441.28B N   as shown in figure 4-4. Many facts can be inferred from the figure, for 



www.manaraa.com

 

  68 

instance, as N increases the 
G  increases, on the contrary as N increases 

B  decreases as long as 

0.3fp  . This is a very appealing behavior as one should not care much for the value of N when 

dealing with the binomial distribution, instead, the value at N = 2 (minimum) can be safely used 

for it corresponds to the maximum multiplier. Furthermore, the figure shows how the binomial 

distribution gives a multiplier that significantly less than the one from the Gaussian distribution 

rendering the estimated norm to be non-conservative enough to lend it more robustness. Next, it 

is natural to look at how does the probability of failure affect the relation between the binomial 

multiplier 
B  and N. Figure 4-5 performs this inspection and reveals that for 0.3fp   the 

multiplier 
B increases as a consequence of larger N.   

 

Fig. 4-5. Binomial Multiplier vs. N for different probabilities of failure. 
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4.4   Propagating Error Bounds across Different Interfaces: 

Here we are concerned with the propagation of error bounds across various levels that is 

to estimate the error due to both reductions based on a reduction in the parameter space only, and 

a reduction in the response of interest space only. This can be regarded as a brick in the multi-

physics error estimation framework [107]. Consider the physical model  y f x . Let  

   1 2 1 2 and N Nx x x y y y X Y  

where the vectors xi’s are randomly generated realizations for the parameters whose 

corresponding responses are given by:  

 i iy f x  

Let 

   
;

r r Tx

x xX U U X  

where 
 r

xU  defines a basis for the parameters active subspace. Next, define:   

1 2 ;x x x x

Ny y y   Y  

with     r r Tx

i x x iy f x U U . Note that the vector x

iy  corresponds to the response value resulting 

from a single reduction in the parameter space. Next, define: 

   r r Ty

y yY U U Y  
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where 
 r

yU  is the matrix associated with the response active subspace calculated based on the 

snapshots matrix Y (obtained from the Gradient-Free algorithm).  Let 

   r r Txy x

y yY U U Y  

This equation implies two reductions, one embedded in x
Y  due to a reduction in the parameter 

space followed by another reduction in the response space via the projector 
   r r T

y yU U . To 

calculate the total errors resulting from both reductions, define the following error bounds: 

 
11,2,

max ;x x

y i
i k

w 


 Y Y                                            (4.31) 

is the response error due to parameter reduction, and 

 
21,2,

max ;y y

y i
i k

w 


 Y Y                                           (4.32) 

is the response error due to response reduction. Then the response error due to both reductions 

can be calculated from:  

    1 2

1 21 1
kxy x y k

y y         Y Y                                     (4.33) 

Proof. From the corollary in section 4.3.1 one can write: 

   1

11
kx x

y  
   Y Y   (4.34) 

   2

21
ky y

y  
   Y Y   (4.35) 
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But 

       .r r Txy y x

y y    Y Y Y Y U U Y Y  

And hence: 

   
.

r r Txy y x

y y    Y Y Y Y U U Y Y                                (4.36) 

Provided that 
yrU  has orthonormal basis, we know that: 

   
1.0

r r T

y y U U . 

Plugging this into (4.36), then taking the probability and substituting from (4.34) and (4.35) we 

get (4.33).□ 

Based on the previous theorem it is possible now to establish a stopping criterion for the 

reduction algorithms based on that the upper-bound computed by the theory should be less than a 

user-defined tolerance and once this is achieved then we have found the intrinsic dimensionality 

corresponding to this tolerance. It is time now to introduce the definition, algorithms and 

applications of ROM in our context. 

4.5 Numerical Tests and Results 

 

 In this section, two case studies are presented in support of the previous discussions. In the 

first case study, the binomial estimator is compared to the Averaged Small-Sample Statistical 

Estimator and the Subspace Statistical Estimator discussed in section 4.2.3. The second case 

study adopts the propagation technique in section 4.4 to a PWR UO2 pin cell. A two-stage 
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reduction is performed on the parameter level and the response level, then on both 

simultaneously. 

 

4.5.1   Case Study 1: Comparison between Small-Sample Estimators and the Binomial 

Estimator: 

A comparison between the Small-Sample Statistical Estimation methods using both 

averaged and subspace estimators, and the binomial variant of the small sample estimator is 

presented. This case study employs computing the norm estimates for a single N-dimensional 

vector using the three formerly mentioned methods, averaged Small-Sample Statistical 

Estimation, Subspace statistical Estimation, and the Binomial Variant of the small sample 

estimator. These estimators will be compared once by fixing the probability of success and 

search for the least multiplier then by fixing the multiplier   then the winning method is the one 

giving the least probability of failure. Figure 4-6 depicts the case where the upper bound of the 

theoretical probability of failure is fixed to 0.1 with a single matrix-vector multiplication (s = 1). 
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The figure shows that the binomial distribution outperforms the other two methods in this 

case as it gives the lowest multiplier   = 1.2383 and hence the least conservative bound. Using 

the binomial distribution exhibits the following desirable features: 

 A linear structure around the 45-degree solid black line which promises that even in the 

failed cases the actual norm is very close to the estimated one. 

 A less conservative estimate is constructed which reflects a more robust and realistic bound 

without violating the expected failure probability. 

 The binomial distribution shows less variance as can be inferred from the lower left and 

right graphs, this explains that most of the tests will be very close to the actual norm. 

 Worst case scenario occurs at N = 2 which means that however large was N the analyst can 

avoid pre-computing the corresponding multiplier and uses the one corresponding to N = 2 
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using a conservative bound but still far less conservative than the other methods using 

standard normal distributions. 

  Next to give room for the subspace condition estimator to better perform we need to 

increase s and hence use more orthonormal vectors to enhance the performance of that method. 

Figure 4-7 compares the methods using s = 4 and still use the multiplier values results in a 

comparable probability of failure of 0.1. The figure shows that with as low as four matrix-vector 

multiplications (or four orthonormal basis vectors for the subspace method), the binomial 

distribution can pick a more accurate estimate. 

 Figure 4-7 supports that the binomial distribution exhibits a significantly less variance 

(lower left corner) and a closer mean to the actual mean where the remaining two methods 

sometimes are off by two orders of magnitude from the actual norm as can be inferred from the 

right lower corner. It can be concluded from a quick peak to the top two graphs that both tests are 

identical in the estimated norms, this is obviously because only one random vector was used (i.e., 

s = 1). This will not show the significance of the subspace estimator until more vectors are used. 

Figure 4.7 depicts the same test using 4 random vectors (s = 4). 
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 In this case, the Subspace estimator gives better results than the Small-Sample estimator in 

the sense that it results in a smaller multiplier and hence a closer estimate, yet the binomial 

distribution is still giving slightly closer estimates and less failed cases. These cases are 

conducted based on a probability of failure of    
4

, 0.5623 0.1
s

f fP p      . This was 

selected to be impractically high to force more failures, in practice this probability is taken to be 

at least    
4

, 0.1 0.0001
s

f fP p      . Figure 4-7 draws a more practical view of the test. 

To correctly predict %99.99 of the cases the estimated norm/bound might reach at least 10 times 

the actual norm in both Small-Sample estimators whereas this multiplier    will still lie 

between 1 -2 using the binomial distribution. These values can be verified from tables I, II in 

Fig. 4-7. Comparison between norm estimation methods. Upper left: Small-Sample method. Upper right: 

Subspace norm estimation. Lower left: Binomial Distribution. Lower right: Norm Comparison using the 

three methods. (Pf = 0.1, s = 4). 
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[104] for N = 20, m = 4 and p = 0.9999 10  which are similar to our (N, s, p and   

respectively).   

  

 Previous tests examined the performance of the binomial estimator vs. two Small-Sample 

Statistical Estimation by fixing the user-defined probability of success. What if the multiplier   

is fixed, which estimator will outperform the rest? 

Figures 4-9 through 4-11 illustrate the cases where the multiplier   is user-defined and the 

probabilities of failure are inspected along with the error from the actual norm in each 

case.probabilities of failure are inspected along with the error from the actual norm in each case. 

Fig. 4-8. Comparison between norm estimation methods. Upper left: Small-Sample method. Upper right: 

Subspace norm estimation. Lower left: Binomial Distribution. Lower right: norm comparison using the 

three methods. (Pf  = 0.0001, s = 4). 
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 Figure 4-9 clearly shows that a multiplier of 5 is too large for the binomial estimator and 

unlike the other methods where some cases lied close to the 45-degree solid line showing that 

actual norm can still be close or maybe larger than the estimated one, the binomial estimators 

were all very far from the line which means that these bounds (estimators) are impractically 

conservative. This motivates the use of the multiplier values from the binomial distribution for 

all other methods, moreover, the bottom right graph is replaced by relative errors in norm 

estimation instead of plotting the norm value because these values are expected to be close to 

each other for the three methods since we have forced the same multiplier. 

 

Fig. 4-9. Comparison between norm estimation methods. Upper left: Small-Sample method. Upper 

right: Subspace norm estimation. Lower left: Binomial Distribution. Lower right: norm comparison 

using the three methods. ( 5   , s = 1). 

 



www.manaraa.com

 

  78 

  

It can be seen in figure 4-10 that the binomial estimator can be within a factor of 1.241 

from the actual norm and still gives a probability of failure that is less than 0.1 using a single 

random vector multiplication, whereas in both Small-Sample variants the probability of failure is 

exceeding %50 for the same factor 1.241   . However, Even with the same multiplier, the 

binomial estimator relative error is from 1-3 orders of magnitudes less than the other Small-

Sample methods. This can be enhanced even more using 4 random vector multiplications (i.e. 

s=4 implying 4 orthonormal basis vectors in the subspace estimator method) as shown in the 

following figure. 

Fig. 4-10. Comparison between norm estimation methods. Upper left: Small-Sample method. Upper 

right: Subspace norm estimation. Lower left: Binomial Distribution. Lower right: norm comparison 

using the three methods. ( 1.241   , s = 1). 
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 Using s=4 enhanced both the Small-Sample and the Subspace estimators but the binomial 

distribution still gives a probability of failure of  
4

0.1 0.0001fp    , where the probability of 

failure for both Small-Sample and Subspace estimators methods are reduced to 0.242 and 0.2 

respectively. The relative error is still at least one order of magnitude less than the other two.  

 

4.5.2   Case Study 2: Bounding a Nonlinear Vector-Valued Function. 

 In this case study, a nonlinear multi-response function is tailored to adequately assess the 

outcome of nonlinearity on active subspace identification algorithm, compare the classical 

Gradient-Based methodology to the use of the pseudo response trick and finally compare the 

binomial estimator to Small-Sample Statistical Estimators showing how these methods can set a 

priori bound and use it for future runs. For these goals consider the function  y f x  where: 

Fig. 4-11. Comparison between norm estimation methods. Upper left: Small-Sample method. Upper 

right: Subspace norm estimation. Lower left: Binomial Distribution. Lower right: norm comparison 

using the three methods. ( 1.3817   , s = 4). 
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 15x  and 
13y . Such that  

T
T T T

I II IIIy y y y  ; 

        2

1 2 3 4 5cos sin tan
T

T T T T T

Iy a x a x a x a x a x ; 

       9 102 2 2

6 7 8cos sin tan 1/ 1
T T

T
a x a xT T T

IIy a x a x a x e e  
 

 

 and  

       2 2

11 12 12 12 12sin cos sin
T

T T T T T

IIIy x a x a x a x a x a x    
  

 

where the    operator stands for the product of corresponding elements, i.e., 

  1 11 1 21 2 1515 1

T

a x a x a x a x  . It is obviously clear that many of these y’s are correlated 

either linearly or nonlinearly. Also among the components of x itself, few constraints are added 

to inject some correlations and hence reducibility. The gradient is analytically computed using 

the symbolic differentiation in MATLAB and the pseudo response is defined such that 

pseudo TR b y ; where b is a random weighting vector, the derivatives of the pseudo-responses are 

stored in J where the derivatives of the original individual responses are stored in   k
k ij

ij

y

x





G . 

The Singular Value Decomposition (SVD) [93, 96] for both derivatives are carried out and based 

on that the orthonormal columns of the active subspaces for the whole function and the 

individual responses are identified from the left singular matrices from J and Gk respectively. 

The following first set of figures depicts the comparison between the binomial estimator, the 

Averaged Small-Sample Statistical Estimation and the Subspace Statistical Estimator and their 

ability to estimate the norm of error vector due to projection onto the active subspace 
 r

xU  

extracted from the sensitivities of pseudo-responses, i.e., 
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      
 

      
 

1 1

1

r r T r r T

k k x x k N k x x N

k

k k N

f x f x f x f x
e

f x f x

 


U U U U
. Figures 4-12 thru 4-24 

illustrate the estimated error norm for each response and compare the accuracy of the estimators. 

Fig. 4-12. Comparison of Errors in 1y . 

Fig. 4-13. Comparison of Errors in 2y  
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Fig. 4-14. Comparison of Errors in 3y . 

Fig. 4-15. Comparison of Errors in 4y . 
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Fig. 4-16. Comparison of Errors in 5y . 

Fig. 4-17. Comparison of Errors in 6y . 
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Fig. 4-18. Comparison of Errors in 7y . 

Fig. 4-19. Comparison of Errors in 8y . 
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Fig. 4-20. Comparison of Errors in 9y . 

 

Fig. 4-21. Comparison of Errors in 10y . 
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Fig. 4-22. Comparison of Errors in 11y . 

 

Fig. 4-23. Comparison of Errors in 12y . 
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Fig. 4-24. Comparison of Errors in 13y . 

The figures demonstrate the same result of the binomial estimator outperforming the averaged 

and the Subspace Statistical Estimator giving the least multiplier with fewer failures (higher 

actual probability of success). This is showing that the methodology not only works for 

estimating random norms but also predicts reasonable estimates for the errors resulting from 

constraining the inputs to the proposed active subspace. The figures defend the claim that the 

high nonlinearity might affect the quality of the basis and hence increase the errors for a given 

size of the active subspace but this nonlinearity will not affect the accuracy of the estimators and 

hence the estimated error bounds will reflect the quality of the active subspace suggesting more 

sampling and better basis. Next set of figures (i.e., from fig 4-25 to 4-37) assess the bounds for 

new runs showing whether these bounds are violated once new perturbations are performed 

given that these perturbations are still constrained to the same subspace.subspace but this 

nonlinearity will not affect the accuracy of the estimators and hence the estimated error bounds 

will reflect the quality of the active subspace suggesting more sampling and better basis. Next set 

of figures (i.e., from fig 4-24 to 4-.36) assess the bounds for new runs showing whether these 
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bounds are violated once new perturbations are performed given that these perturbations are still 

constrained to the same subspace. 

 

Fig. 4-26. Bounds of 2y  at different runs. 

Fig. 4-25. Bounds of 1y  at different runs. 
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Fig. 4-27. Bounds of 3y  at different runs. 

Fig. 4-28. Bounds of 4y at different runs. 
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Fig. 4-29. Bounds of 5y  at different runs. 

Fig. 4-30. Bounds of 6y  at different runs. 
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Fig. 4-31. Bounds of 7y  at different runs. 

Fig. 4-32. Bounds of 8y at different runs. 
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Fig. 4-33. Bounds of 9y at different runs. 

Fig. 4-34. Bounds of 10y at different runs. 
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Fig. 4-35. Bounds of 11y at different runs. 

Fig. 4-36. Bounds of 12y at different runs. 
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Fig. 4-37. Bounds of 13y  at different runs. 

It is noteworthy that 11y  gives an extremely large error which reflects that this particular 

response was not efficiently captured by the active subspace and thus the user needs to sample to 

add more basis vectors to the active subspace if this individual response is of high interest. 

Next, we compare the subspaces extracted for each response individually versus the 

subspace extracted using the pseudo response. Figures 4-38 thru 4-50 are dedicated to that goal, 

each figure illustrates the error in one response due to projection onto the subspaces extracted 

based on each response along with the subspace extracted based on the sensitivities of the pseudo 

response. It is intuitive to expect that for instance, the error in a certain response will be 

minimum using the active subspace extracted from the sensitivities of that same response, but 

how will it the other subspaces behave? The answer can be inferred from the following figures. 
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Fig. 4-38. Errors in 1y  due to projection onto all subspaces. 

 

 

Fig. 4-39. Errors in 2y  due to projection onto all subspaces. 
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Fig. 4-40. Errors in 3y  due to projection onto all subspaces. 

 

Fig. 4-41. Errors in 4y  due to projection onto all subspaces. 
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Fig. 4-42. Errors in 5y  due to projection onto all subspaces. 

 

Fig. 4-43. Errors in 6y  due to projection onto all subspaces. 
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Fig. 4-44. Errors in 7y  due to projection onto all subspaces. 

 

Fig. 4-45. Errors in 8y  due to projection onto all subspaces. 
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Fig. 4-46. Errors in 9y  due to projection onto all subspaces. 

 

Fig. 4-47. Errors in 10y  due to projection onto all subspaces. 
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Fig. 4-48. Errors in 11y  due to projection onto all subspaces. 

 

Fig. 4-49. Errors in 12y  due to projection onto all subspaces. 
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Fig. 4-50. Errors in 13y  due to projection onto all subspaces. 

From the previous figures and discussion, one can infer that although the subspace 

extracted from an individual response will lead to the least error for the given response, it will 

not be representative of other responses. On the other hand, the active subspace extracted via the 

pseudo response is representative of all responses and results in errors that are comparable to the 

single response active subspace. In other words, if we consider the whole problem (i.e., all the 

responses), we will find that the pseudo-response-based-subspace outperforms the individual 

active subspaces for the same size. Of course, one can take that to the next level and solve an 

optimization problem to get the optimum weights bopt such that 
pseudo T

optR b y  minimizes the 

error for that subspace size. This is beyond the scope of this work, especially that the subspace 

captured by the random pseudo-response gives an acceptable error. This conclusion can be tested 

if all the active subspaces are plotted and the relative position or angles are visualized. One 

obstacle is the high dimensionality of the subspaces. For illustration, we show the first three 
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components of the active subspace in Figure 4-51. The figure supports this conclusion and hence 

defends the claim that the pseudo response is an essential entity in identifying the active 

parameter subspace for vector-valued functions especially when the number of responses is as 

large as nuclear reactor applications, this number is typically in the order of 104-106 which means 

that to get the parameter subspace one needs to find 104-106 active subspaces and then somehow 

aggregate them to find a single active subspace which is impractical in reactor physics 

applications. Fig. 4-51 illustrates few of the active subspaces with the red subspace places such 

that it gives the minimum error among all the active subspaces as shown in the former figure.   

 

Fig. 4-51. Active Subspaces from individual responses and from the pseudo response(showing 

only the first 3 principal directions). 

 

4.5.3   Case Study 3: Propagation of Error Bounds. 

 This case study aims to employ the estimator to construct error bounds due to reduction at 

different interfaces, for this purpose a PWR UO2 pin cell model is engaged in a three steps test 

where the reduction is performed at the parameter level, then on the state level then both. A 

PWR UO2 pin cell is depleted to (3.0 GWd/MTU) and is used as the reference on which the 

active subspace extraction is based. For that purpose SCALE 6.1 [49] is used, sequences like t-
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depl, t-newt and tsunami-2d are needed for depletion, neutronics, and sensitivity analysis 

respectively. 

 The original parameter space contains 7 nuclides * 2 reactions * 238 energy groups = 3332 

parameters, whereas the nominal dimension of the response space is 238 representing the 

material flux at 238 energy group. As usual, the probability of failure is intentionally picked to 

be huge (10 %) which gives room for some failures to occur. After making a statement about the 

probabilistic error bound for this case and extracting the active subspaces, these subspaces are 

then tested in completely different conditions. The goal here is to check if the 3.0 GWd/MTU 

was the proper point for designing our spaces? Are the spaces capturing all the expected physics? 

Shall they behave as good when the some of the conditions change, (say temperature for 

instance)? And most importantly, will the error bound act as an alarm for the user to direct him 

to go sample the active spaces at different conditions or even advise him to add more directions 

to his so-called “important directions” spanning the active space? Motivated by these questions 

another case is employed, this time, the initial composition came from a depletion of 24 

GWd/MTU and at room temperature. 

Next Figures. 4-52 through 4-59 display the results due to reductions in parameter and/or 

response spaces. In the odd-numbered figures, the response is the total collision rate in the 

energy range 1.85 to 2.35 MeV. The even figures show the same response but in the thermal 

range between 0.975 and 1.0 eV. We use these small ranges to depict the power of the reduction 

in capturing localized responses. In each of the figures, the left graph compares the actual error 

resulting from the reduction to the error bound calculated from Eq. (4.13). The 45-degree solid 

line indicates the limit of the failure region, i.e., when the actual error exceeds the bound 
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predicted by the theory. The right graphs show the actual variation of the response due to a 

random perturbation of 30% in the parameters. 

 

Fig. 4-52. Fast Collision Rate Errors – Parameter Reduction Only. 

 

 

Fig. 4-53. Thermal collision rate errors – parameter reduction only.   
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Figures 4-52 and 4-53 show a parameter-only-based reduction, meaning that the reduction is 

rendered in the parameter space. Both the level of reduction in terms of the rank of the active 

parameter subspace rx and the actual probability of failure are shown on the top of the right 

graph. The reader should remember that we picked s and the multiplier in eq. (4.13) such that the 

probability of success is 0.9. In reality, s is picked to be 5 which results in a probability of 

success of 99.999%. Figs. 4.54 and 4.55 employ response-based reduction only, implying no 

reduction in the parameter space. The rank of response active subspace  ry  is indicated in a 

similar manner.  

 

Fig. 4-54. Fast Collision Rate Errors – Response Reduction Only 



www.manaraa.com

 

  106 

Fig. 4-55. Thermal Collision Rate Errors– Response Reduction Only.  

 

Fig. 4-56. Fast Collision Rate – Both Reductions. 
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Fig. 4-57. Thermal Collision Rate -Both Reductions. 

 

The previous six figures are for a 3 GWd/MTU depleted pin cell used to construct the bounds, 

notice that the reduction errors calculated will depend on whether the parameter-based reduction 

captures the important parameter directions that control the model response variations. 

Moreover, the response reduction, if not captured correctly, will miss directions along which the 

response is expected to vary. This situation will be clearer when we consider different physics 

conditions as done in the next case study. 

Next, the following six figures employ the active subspaces extracted from the previous 

reference model to predict the response variations at different physics conditions. We employ a 

24 GWd/MTU depleted fuel simulated at cold conditions. This emulates the effect of starting up 

a reactor with a once-burned fuel. 

Figs. 4-58 through 4-63 correspond respectively to Figs. 4-52 through 4-57, where now the 

model is being evaluated at different physics conditions, using the reduction results from the 

previous case study, i.e., same ranks for parameter and response spaces, same responses, and 
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same size of parameter perturbations. The idea here is to check whether the model reduced at hot 

conditions could be employed at sufficiently different physics conditions.  

 

 

Fig. 4-58. Fast Collision Rate Errors - Parameter Reduction Only. 

 

 

Fig. 4-59. Thermal Collision Rate Errors - Parameter Reduction Only. 
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Figs. 4-58 and 4-59 show that the actual errors and the predicted bounds due to the 

parameter reduction are slightly higher than the errors in figs. 4-52 and 4-53. This indicates that 

the active subspace extracted using the reference model have approximately the same level of 

accuracy at new physics conditions.  

Figs. 4-60 and 4-61 behave in a different fashion, where now results indicate that the 

actual errors and their bounds have noticeably increased beyond those in Figs. 4-54 and 4-55. 

This indicates that the responses at the new physics conditions are changing along new directions 

in the response space that are not captured by the reference physics models. Also, notice that in 

all cases, the actual probability of failure is always less than the theoretical value of 1-10-s. 

  

 

Fig. 4-60. Fast Collision Rate Errors - Response Reduction Only. 
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Fig. 4-61. Thermal Collision Rate Errors - Response Reduction Only. 

 

Fig. 4-62. Fast Collision Rate – Both Reductions. 
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Fig. 4.63. Thermal Collision Rate – Both Reduction. 

 The following table shows a comparison between the reduction errors in case of parameter 

reduction, response reduction and simultaneous reductions for selective responses. The table 

shows that error bound for both reductions is greater than or equal to the sum of the two error 

bounds for each interface separately which numerically prove eq. (4.33). 
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Table I. Errors at Different Reduction Interfaces. 

Energy(eV) Parameter Reduction (%) Response Reduction (%) Both (%) 

1E-01-1.25E-01 3.440119127 1.96191E-07 3.440119194 

5E-02-6E-02 3.349602423 2.0457E-07 3.349602447 

6E-02 - 7E-02 3.955629492 1.97934E-07 3.955629436 

7E-02 - 8E-02 3.7945243 2.53609E-07 3.794524287 

4E-02 - 5E-02 3.44621065 1.9803E-07 3.446210638 

1E-02-2.53E-02 4.188254639 1.21176E-07 4.18825466 

8E-02 - 9E-02 3.453572923 3.03608E-07 3.453572969 

3E-02 - 4E-02 3.902596376 1.47336E-07 3.902596405 

9E-02 - 1E-01 3.433820983 2.47241E-07 3.433820863 

1.25E-01-1.5E-01 3.526796356 2.4417E-07 3.526796456 

2.53E-02-3E-02 3.752223964 9.76915E-07 3.75222389 

1.5E-01-1.75E-01 3.70786145 1.63389E-06 3.707861774 

1.75E-01-2E-01 3.445241801 4.65338E-06 3.44524029 

7.5E-03-1E-02 5.357536753 1.0331E-05 5.357536306 

2E-01-2.25E-01 3.952214865 1.43248E-05 3.952211457 

5E-03-7.5E-02 7.886686911 1.28685E-05 7.886686507 

2.25E-01-2.5E-01 3.352496404 5.18546E-05 3.352499921 

4.0E-03-5.0E-03 7.322258969 0.000120071 7.322260748 

2.5E-01-2.75E-01 3.620834966 0.00010714 3.620834811 

3.0E-03 – 4.0E-03 7.887529058 0.000171297 7.887612678 

2.75E-01- 3.0E-01 4.290836693 0.000178194 4.290871286 

5.0E00- 5.4E00 3.563834792 0.002618404 3.564156127 

3.0E-01 - 3.25 E-01 3.572903889 0.000407313 3.573024426 

4.0E-01-4.5E-01 3.701153845 0.001769107 3.701377851 

2.5E-03-3.0E-03 7.004411863 0.000816018 7.004288304 

4.75E00-5.0E00 3.229780944 0.008471093 3.231645888 

4.0E00-4.75E00 3.257848945 0.007573203 3.258867235 

3.25E-01-3.5E-01 3.599056621 0.000905715 3.598498847 

4.5E-01-5.0E-01 3.228058887 0.004004937 3.22862494 

2.0E-03-2.5E-03 8.00777732 0.001022243 8.007345542 

5.5E-01-6.0E-01 3.268039191 0.00951038 3.265611306 

5.0E-01-5.5E-01 3.456567367 0.007802879 3.457179184 

3.5E-01-3.75E-01 3.471976284 0.001599284 3.472051206 

1.5E-03-2.0E-03 8.404778008 0.001760966 8.405178647 

3.75E-01-4.0E-01 3.549323071 0.004358526 3.547520923 

1.0E-03-1.2E-03 2.933508304 0.005250533 2.934386114 

3.05E+02-5.5E+02 2.844417009 0.04124776 2.843561939 

5.40E+00-6.00E+00 4.074100721 0.016322211 4.074944698 

6.50E-01-7.00E-01 3.570617637 0.034846603 3.56734263 

6.00E-01-6.25E-01 3.299556823 0.040263079 3.314687676 
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Table I. Continued. 

Energy(eV) Parameter Reduction (%) Response Reduction (%) Both (%) 

8.10E+00-9.10E+00 2.979535709 0.053468195 2.971807272 

1.20E-03-1.50E-03 8.806732958 0.005031538 8.807632996 

6.25E-01-6.50E-01 2.85300282 0.048711304 2.857971939 

7.00E-01-7.50E-01 3.000604253 0.032137416 3.005533808 

1.22E+02-1.86E+02 3.096156876 0.14700422 3.098386868 

1.86E+00-1.94E+00 3.30643634 0.435769093 3.274282031 

7.50E-04-1.00E-03 10.14884207 0.008543768 10.14911996 

3.15E+00-3.50E+00 3.304932906 0.70442187 3.321994678 

7.50E-01-8.00E-01 3.481919803 0.110131449 3.485124135 

1.00E-03-1.20E-03 8.921925394 0.025576981 8.926885303 

8.00E-01-8.50E-01 3.340759312 0.083782018 3.344441834 

8.50E-01-9.00E-01 3.408852916 0.074667076 3.398109037 

3.73E+00-4.00E+00 3.267999643 0.588855401 3.277918267 

5.00E-04-7.50E-04 10.9842659 0.026901158 10.99812037 

1.50E+00-1.59E+00 3.229417345 0.569922291 3.270350255 

1.77E+00-1.86E+00 3.363233823 0.632339006 3.427290995 

2.00E+00-2.12E+00 3.121457334 0.486267471 3.213677634 

1.94E+00-2.00E+00 3.14323654 0.707228962 3.249938464 

1.00E-04-5.00E-04 10.31416024 0.035525182 10.31480489 

1.40E+00-1.45E+00 3.18535022 0.794470291 2.84917482 

1.35E+00-1.40E+00 2.438763758 0.765872509 2.478244486 

1.45E+00-1.50E+00 3.671618674 0.611078126 3.782569923 

1.30E+00-1.35E+00 3.454533038 0.416090082 3.651712544 

3.50E+00-3.73E+00 3.175719636 1.04835234 3.025468598 

1.68E+00-1.77E+00 3.158062497 0.459241369 3.082581375 

1.59E+00-1.68E+00 2.979590178 0.673087997 2.840554963 

1.15E+03-1.50E+03 3.228473236 0.949831745 3.528308305 

6.83E+02-9.50E+02 3.25350879 0.563854646 3.326281454 

1.44E+01-1.51E+01 3.971263281 0.36431594 4.037361159 

1.38E+01-1.44E+01 3.416538128 0.7029957 3.3529768 

1.25E+00-1.30E+00 3.460826456 0.370328831 3.320335018 

8.20E+01-9.00E+01 3.616811469 1.051309343 3.766329772 

2.57E+00-2.67E+00 5.429779234 0.113663378 5.472640915 

1.70E+01-1.85E+01 3.585454991 1.220966558 3.756504833 

1.00E+01-1.15E+01 3.766336589 0.880316917 3.699577556 

2.67E+00-2.77E+00 5.36234571 0.09530898 5.350362995 

2.47E+00-2.57E+00 3.686998979 1.120642066 3.926400591 

3.90E+03-6.00E+03 2.938200081 0.994489016 3.003289723 
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Table I. Continued. 

Energy(eV) Parameter Reduction (%) Response Reduction (%) Both (%) 

1.85E+06-2.35E+06 3.176916754 1.745885613 3.087929813 

3.00E+06-4.30E+06 3.219765218 1.536677144 4.01260657 

1.50E+06-1.85E+06 3.208845536 1.238970135 3.333488129 

9.10E+00-1.00E+01 3.008185386 0.831895875 2.921320334 

2.40E+02-2.85E+02 3.280331754 1.461150385 3.348388236 

9.00E-01-9.25E-01 5.900216027 0.217383742 5.84683601 

2.00E+05-2.70E+05 3.175679906 0.380489859 3.12146127 

9.00E+01-1.00E+02 3.302432797 0.799491871 3.336966003 

1.70E+04-2.50E+04 3.162743498 0.598742178 2.929230334 

2.12E+00-2.21E+00 3.05428968 0.411605753 3.118420389 

6.00E+00-6.25E+00 4.832544945 0.171753354 4.795208137 

2.38E+00-2.47E+00 2.72963177 0.77101732 3.013134903 

2.10E+02-2.40E+02 3.282014086 1.783145197 4.011639266 

2.48E+06-3.00E+06 3.220309362 1.920806293 2.831543032 

9.50E+02-1.15E+03 3.033028898 1.357191091 2.742660931 

9.25E-01-9.50E-01 6.634054631 0.205969842 6.698071554 

3.00E+04-4.50E+04 3.067794821 0.60935555 2.792272436 

1.50E+05-2.00E+05 3.178987788 0.448914218 3.10929216 

2.21E+00-2.30E+00 2.666092295 0.517205142 2.675728758 

5.50E+02-6.70E+02 3.388384206 1.817784541 3.976954492 

2.77E+00-2.87E+00 3.064841491 2.00378162 3.143030632 

1.19E+01-1.29E+01 3.018142829 1.225637723 3.303674481 

2.70E+05-3.30E+05 2.972939308 0.395030859 2.90421054 

2.25E+01-2.50E+01 3.230008405 1.376279935 3.236231644 

3.18E+01-3.33E+01 3.415804606 1.037478497 3.254078748 

9.50E-01-9.75E-01 6.682313603 0.191869864 6.70300759 

2.30E+00-2.38E+00 3.036527504 0.510561599 3.093250825 

3.30E+05-4.00E+05 3.159357046 0.319790829 3.110190193 

6.00E+03-8.03E+03 2.987608679 0.997613659 2.890946699 

9.50E+03-1.30E+04 3.153772264 0.644871842 3.382349245 

2.87E+00-2.97E+00 3.381593419 0.609806148 3.318457369 

4.10E+01-4.24E+01 3.630283599 2.251093178 3.060625834 

9.75E-01-1.00E+00 14.67190246 0.080256984 14.69449436 

5.34E+01-5.90E+01 2.995121721 0.945342045 2.945282552 

1.80E+03-2.20E+03 3.221452043 1.049650986 3.499907353 

1.51E+01-1.60E+01 3.244212774 0.713549379 3.324859705 

1.23E+00-1.25E+00 4.120721904 0.592750393 4.103246268 

1.15E+00-1.18E+00 6.757476819 0.188408885 6.786055278 

2.75E+01-3.00E+01 2.98640029 0.70862293 2.81875584 

1.18E+00-1.20E+00 5.51424824 0.592085803 5.353111832 
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Table I. Continued. 

Energy(eV) Parameter Reduction (%) Response Reduction (%) Both (%) 

1.20E+00-1.23E+00 6.519062845 1.032079949 6.787587662 

1.00E+05-1.28E+05 3.106382777 0.379456487 2.907653351 

3.05E+00-3.15E+00 3.156117489 0.640844263 3.110611465 

3.00E+03-3.74E+03 2.959276793 1.26489337 3.143872342 

1.29E+01-1.38E+01 2.780480768 0.893004549 2.794946277 

2.85E+02-3.05E+02 3.414493735 2.186812974 4.33111915 

1.60E+01-1.70E+01 3.026020104 0.926802482 3.141075316 

2.50E+01-2.75E+01 3.276564717 0.855370687 3.044203329 

6.25E+00-6.50E+00 7.718007084 0.159837643 7.743665695 

6.00E+05-6.70E+05 3.111038929 0.379657044 3.103192322 

7.50E+05-8.20E+05 3.138093844 0.473529887 3.047403204 

1.30E+04-1.70E+04 3.040135793 0.841119545 3.057165875 

6.79E+05-7.50E+05 3.087013798 0.441131027 2.957487678 

1.55E+03-1.80E+03 3.485925075 1.597105019 3.580792575 

4.24E+01-4.40E+01 3.110838432 0.407541857 3.032197577 

2.10E+01-2.25E+01 3.972201745 0.673281038 3.89828236 

2.58E+03-3.00E+03 3.059333736 1.03751009 3.045309668 

1.93E+02-2.08E+02 3.945704236 2.392708959 3.052332647 

4.40E+01-4.52E+01 3.063421027 1.343540369 3.088322646 

3.96E+01-4.10E+01 3.476759919 1.156999111 3.555916767 

1.00E+02-1.08E+02 3.786351292 1.133611191 3.766836025 

5.00E+05-5.50E+05 2.771590123 0.329781379 2.769015993 

6.00E+04-7.30E+04 3.168675541 0.422676647 3.004628167 

6.75E+01-7.20E+01 3.072821349 0.688226534 2.882766621 

1.10E+06-1.20E+06 3.215990021 0.418189124 3.039951691 

7.20E+01-7.60E+01 2.931155169 1.204872421 2.984211672 

1.28E+05-1.50E+05 3.206134953 0.388075407 3.176003786 

1.19E+02-1.22E+02 3.422767266 0.629001011 3.326796352 

1.08E+02-1.15E+02 3.317528966 0.638192322 3.366936099 

8.50E+04-1.00E+05 3.143749013 0.339079111 3.038985281 

3.00E+01-3.13E+01 3.07794049 0.70222597 3.16283641 

8.03E+03-9.50E+03 3.031021515 0.728528284 3.104140285 

1.90E+01-2.00E+01 4.133089518 4.090490463 4.511339704 

2.29E+03-2.58E+03 2.821658604 1.291395743 3.117001558 

9.20E+05-1.01E+06 3.249781302 0.376999228 3.209337868 

2.50E+04-3.00E+04 3.352517707 0.657106035 3.054070866 

4.80E+06-6.43E+06 3.217052189 2.319122544 3.679142251 

7.60E+01-8.00E+01 2.864366502 0.407879056 2.919077853 

6.10E+01-6.50E+01 2.822762656 1.340351087 2.768349664 

1.40E+06-1.50E+06 3.220109072 0.782115017 3.325465953 
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Table I. Continued. 

Energy(eV) Parameter Reduction (%) Response Reduction (%) Both (%) 

1.01E+06-1.10E+06 2.850855869 0.349376802 2.79422865 

7.00E+00-7.15E+00 8.589577168 1.104430241 8.610117229 

4.52E+01-4.70E+01 2.9472128 0.403652145 2.950077916 

1.85E+01-1.90E+01 2.743295308 2.218707703 3.38546367 

2.00E+01-2.10E+01 6.313389666 0.715807596 6.487809101 

5.20E+04-6.00E+04 3.189945148 0.473294298 3.047901321 

3.00E+00-3.05E+00 3.328896003 0.560353476 3.322918572 

1.86E+02-1.93E+02 3.484060881 3.379121918 4.520543885 

3.33E+01-3.38E+01 3.449448095 1.525843365 3.991197516 

1.15E+01-1.19E+01 3.627915331 2.494369694 3.678287139 

8.20E+05-8.61E+05 3.19292962 0.384499932 3.149225937 

2.35E+06-2.48E+06 3.116400309 1.884333592 3.361530738 

1.13E+00-1.14E+00 16.06272664 1.012493116 15.96943342 

1.14E+00-1.15E+00 13.1215594 1.332576348 12.91629698 

5.90E+01-6.10E+01 3.259753985 1.062406668 3.171443628 

1.12E+00-1.13E+00 19.25408896 0.823583447 19.19507661 

1.11E+00-1.12E+00 28.40826643 0.73792133 27.70563315 

1.00E+00-1.01E+00 29.54845937 0.556872689 29.42842751 

1.25E+06-1.32E+06 3.176745292 0.406012148 3.172296959 

1.10E+00-1.11E+00 25.29329731 0.774812724 25.47794365 

3.80E+01-3.91E+01 3.922997667 3.947742267 4.614513315 

4.70E+05-5.00E+05 3.045699092 0.373784125 3.021491526 

1.01E+00-1.02E+00 33.59576825 0.387101223 33.58409846 

1.09E+00-1.10E+00 33.95068191 0.428600223 33.85923349 

1.02E+00-1.03E+00 32.50851034 0.411412637 32.42343229 

1.08E+00-1.09E+00 32.30224322 0.61779347 32.44405121 

1.03E+00-1.04E+00 33.12480181 0.577589705 33.03925809 

1.07E+00-1.08E+00 33.98903723 0.54448215 33.95319308 

3.91E+01-3.96E+01 3.70884527 1.822419546 4.009509314 

1.05E+00-1.06E+00 34.14680566 0.586645806 34.30480535 

1.04E+00-1.05E+00 36.22793192 0.58966325 36.16242968 

1.06E+00-1.07E+00 36.9548458 0.529419599 37.00397494 

5.73E+05-6.00E+05 3.148913957 0.463502702 3.093421134 

4.50E+04-5.00E+04 3.190552737 0.728944164 3.143101155 

4.70E+01-4.83E+01 2.695623736 0.558037829 2.789307483 

2.97E+00-3.00E+00 3.089020785 0.561902161 3.185111705 

1.20E+06-1.25E+06 3.18827519 0.335803718 3.154405387 

6.75E+00-7.00E+00 14.35002581 0.675049151 14.36852549 

4.40E+05-4.70E+05 3.203942912 0.350165622 3.139106614 

4.30E+06-4.80E+06 2.851389668 2.397640085 3.502489547 
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Table I. Continued. 

Energy(eV) Parameter Reduction (%) Response Reduction (%) Both (%) 

7.50E+04-8.20E+04 3.019653098 0.49038035 2.927516098 

5.06E+01-5.20E+01 2.947144339 0.864449708 3.024941283 

5.50E+05-5.73E+05 2.949834038 0.41911658 2.977260384 

3.70E+01-3.80E+01 10.15670657 2.414522085 10.12591683 

5.20E+01-5.34E+01 2.982918243 1.505588734 3.468357397 

4.92E+01-5.06E+01 3.021375114 0.745479296 3.002005079 

6.50E+01-6.75E+01 6.177972558 2.480591822 6.278510841 

1.36E+06-1.40E+06 3.174124473 0.580356312 3.095144704 

4.00E+05-4.20E+05 3.217378809 0.31385384 3.16663353 

8.00E+01-8.20E+01 6.523370161 3.214616095 7.123052748 

3.38E+01-3.46E+01 2.873542407 2.509087363 3.412715727 

4.83E+01-4.92E+01 3.323443568 0.493222469 3.43098238 

1.15E+02-1.19E+02 3.592186254 6.269392312 5.849618048 

3.46E+01-3.55E+01 4.467109911 5.323014233 4.524150726 

8.75E+05-9.00E+05 3.267598485 0.401438877 3.157889337 

3.74E+03-3.90E+03 3.174379477 0.937937011 3.212323745 

1.50E+03-1.55E+03 3.304687874 0.927158984 3.241155242 

4.20E+05-4.40E+05 3.192573025 0.364518198 3.159269541 

1.32E+06-1.36E+06 3.198147667 0.385882945 3.10516558 

3.13E+01-3.18E+01 3.125820739 0.620673846 3.127160324 

6.43E+06-8.19E+06 3.087081522 5.276383593 4.923731049 

2.20E+03-2.29E+03 3.210812464 1.068281042 3.247702304 

3.55E+01-3.70E+01 7.779992563 5.828968455 7.894776261 

1.00E-05-1.00E-04 13.52273172 14.21245979 11.20261079 

9.00E+05-9.20E+05 3.089582199 0.501323351 3.116603694 

8.20E+04-8.50E+04 3.099841581 0.468170183 3.033782806 

5.00E+04-5.20E+04 3.3158727 0.549254122 3.195619214 

8.61E+05-8.75E+05 3.26386224 0.40454677 3.17831173 

6.70E+02-6.83E+02 3.242498873 0.404983734 3.226443691 

6.70E+05-6.79E+05 3.108524743 0.392184974 3.013186878 

7.30E+04-7.50E+04 3.145353031 0.439195326 3.128320518 

8.19E+06-1.00E+07 3.184262661 4.855364239 5.669018221 

6.50E+00-6.75E+00 39.82442634 67.38295168 56.44445726 

2.08E+02-2.10E+02 10.77085537 19.76873596 17.47878447 

1.00E+07-1.28E+07 4.414708119 6.038002502 6.052646317 

1.28E+07-1.38E+07 4.903521462 5.554203188 5.623117927 

1.38E+07-1.46E+07 6.812689533 6.177168865 8.31239257 

1.46E+07-1.57E+07 6.782327127 7.961462528 9.245218544 

1.57E+07-1.73E+07 5.82694347 9.705894792 8.725912172 

1.73E+07-2.00E+07 8.510243016 13.30405731 10.70046423 
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Table I. Continued. 

Energy(eV) Parameter Reduction (%) Response Reduction (%) Both (%) 

max 39.82442634 67.38295168 56.44445726 

Mean 5.797226707 1.395116938 5.987287655 

 

4.6 Conclusions: 

The binomial estimator is presented and is compared to two of the most successful 

methodologies; the Averaged Small-Sample Statistical Estimator and the Subspace Statistical 

Estimator to estimate vector/matrix norms. The proposed distribution and numerical 

methodology defend the argument that we do not necessarily need to find an analytic closed 

form for the probability and that via numerical sampling from a binomial distribution one can 

find the multiplier necessary to give a user-defined probability of success. This enables the 

analyst to build a robust estimate that is much closer to the actual norm than the small-sample or 

the subspace estimator. Usually, these small-sample methods accept a multiplier of the order of 

10-100 which gives an estimate that is within two order of magnitudes from the actual norm. The 

binomial distribution, on the other hand, gives an estimate that is within 1-2 from the actual 

norm. This relaxation in the bounds enabled the analyst to perform more reductions and reaches 

a probability of 0.99999 only with the cost of 5 additional matrix-vector multiplications. The 

binomial estimator has succeeded to outperform both versions of Small-Sample estimators in 

both aspects (i.e., giving the least multiplier for a fixed probability of success and the highest 

probability of success for fixed multipliers).   
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The binomial distribution showed the tendency to pick non-conservative realistic bounds, 

furthermore it exhibits a linear structure around the failure fence determined by the 45-degree 

solid line in the estimated vs. actual norm plot revealing that even for failed cases, although the 

actual norm is greater than the estimated bound but they are so close to each other which lends 

robustness to the constructed bound. The reason for this behavior is the very low variance 

resulting from the squared components of the binomial random vector compared to other 

distributions. This low variance negates the divergence of the test points and explains the linear 

structure near the actual norm. This work motivates a more rigorous exploration for the binomial 

distribution and maybe analytical forms for the probability of success and how it does relate to 

the multiplier  . This is left for future work for the author has mainly focused on the 

applicability of the bound in real-world applications. Having such a reliable bound motivated the 

propagation of reduction errors due to reductions at different interfaces as shown in case study 3. 

This work has equipped previously developed ROM techniques with probabilistic error metrics 

that bound the maximum errors resulting from the reduction. Given that reduction algorithms can 

be applied at any of the various model interfaces, e.g., parameters, state, and responses, the 

developed metric effectively propagates the associated errors to estimate an error bound on the 

response of interest that efficiently predicts the total error due to reductions at different interfaces 

and thus can be generalized to loosely-coupled multi-physics problems.       
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CHAPTER FIVE 

DEVELOPMENT OF MULTI-LEVEL REDUCED ORDER MODELING 

METHODOLOGY (MLROM): 

5.1 Introduction 

Over the past few decades, the vast majority of computational scientists have been 

heavily investing in the development of modeling and simulation techniques. Empowered by the 

exponential growth in computing powers, scientists continuously seek to improve their models 

by adding additional levels of details (i.e., employing fine-mesh, fine energy resolution, multi-

phase analysis, tightly coupled multi-physics, etc.). Although these models are expected to 

improve the understanding of the physics and physical behaviors, and despite this noticeable 

increase in computing power, the performance of such high fidelity model is still handicapped by 

the overwhelmingly high computational cost, especially when computationally intensive 

analyses are of interest such as data assimilation, sensitivity analysis, uncertainty quantification 

and design optimization. To address this challenge, active subspace identification techniques can 

be applied to reduce the complexity of the original models thus help realize the goals of 

advanced modeling and simulation techniques. 

Chapters 3 and 4 have shown that a small number of code runs can be used to reduce the 

effective dimensionality of the model interfaces. For example, using rx adjoint runs can identify 

the active parameter subspace whereas using ry forward runs is enough to capture the active 

response subspace, where rx and ry are the intrinsic dimensions of the parameter and response 

spaces respectively. While this basic approach proved valuable, and has been shown to reduce 

the dimensionality by several orders of magnitude for reactor physics calculations, it may not be 
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enough to render ROM practical, especially when the intrinsic dimensionality of the models is 

too high, which is the case for extremely detailed models operating on leadership computing 

platforms. In this chapter, we explore an alternative approach to rendering a reduction that 

significantly reduces the cost of building an ROM when the execution of the full model either in 

the forward or adjoint model is computationally taxing. Specifically, we show that a lower 

fidelity model, i.e., one employing simpler physics model, or coarser mesh, can be used to render 

a reduction with comparable performance to that produced using the original high fidelity model. 

We refer to this methodology as multi-level ROM [108] 

 

5.2 MLROM Methodology 

 

The general outcome of this methodology is that one may identify the active subspaces 

and thus render reduction for a high fidelity model by executing such model a number of times 

equal to r (the intrinsic dimensionality of the model’s parameter and/or response spaces which is 

typically in the order of few hundreds of reactor physics models), this is several orders of 

magnitude smaller than the original dimensionality, which measures either the size of the state 

space (i.e., flux), the parameters (e.g., cross-sections), or responses (e.g., pin power distribution), 

all expected to be very large in dimensionality (typically in the order of 104-106 for reactor 

applications). Notwithstanding this significant reduction, few hundred runs of high fidelity codes 

remains impractical even on supercomputers. Multi-level ROM (MLROM) is a new development 

in ROM, which allows one to extract the active subspaces by executing a low-fidelity model in 

lieu of the high fidelity model on a small sub-domain of the overall problem domain, (i.e., pin 

cell or 2D lattice vs. whole core, coarse mesh vs. fine mesh, homogenized material vs. 
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heterogeneous media, collapsed energy structure vs. fine energy structure, etc.). The goal is to 

show that this approach is capable of capturing the important directions spanning the active 

subspaces without violating the error bounds constructed from employing the binomial estimator 

to the low fidelity model to establish realistic upper-bounds over the expected range of variations 

for the high fidelity model. Familiarity with the physics of the problem will help educating the 

choice of the sub-domain(s) used to represent the low-fidelity model. 

 

5.2.1   Mathematical Description: 

 

The MLROM methodology can be mathematically described as follows: Consider the low-

fidelity model: 

( );    ,LF LF n my f x x y    

Let 
  x
r n r

x


U  and 

  ym rr
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U   be matrices containing the orthonormal basis of the active 

parameter and response subspaces then define the low-fidelity error operator: 
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Then an upper bound can be established using: 
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 E                                                          (5.2) 

This upper bound is then tested using the high-fidelity model: 
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( );  ,HF HF n HF My f x x y    

with M is the whole domain response dimensionality whereas m is the sub-domain response 

dimensionality, i.e. m M . 

Then if the upper bound is less than a user-defined tolerance i.e. user  the same active 

subspaces extracted from the low-fidelity model are tested against the high-fidelity model: 
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E                         (5.3) 

Satisfies that: 

    1 ( , )
s

HF

fp   E                                        (5.4) 

Following the developments in chapter 4, it is safe to state that the subspaces extracted from the 

low-fidelity model are representative of the high-fidelity model once eq. (5.4) is satisfied. 

5.3 Numerical Experiments and Results 

In this section, few tests are conducted moving from a 2x2 mini assembly model to a row 

of 15 pin cells in a PWR assembly arriving at a full 7x7 BWR model. Each time the choice of the 

low-fidelity model is an attempt to learn more about the physics and infer which low-fidelity 

model can capture most of the important directions spanning the active parameter subspace to 

efficiently represent the active subspace of the original high-fidelity model. It is undeniable that 

familiarity with the problem helps taking an educated decision about picking the low-fidelity 

model and conditions, but even if the user has no clues, she can always try different low-fidelity 
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models and use the binomial estimator discussed in the former chapter to decide which low-

fidelity model outcomes in a more representative active subspace. 

 

5.3.1   Case Study 1: Bounding Coarse Mesh Finite Difference Acceleration (CMFD) 

Method: 

 

One widely used acceleration technique in reactor computations is the coarse mesh finite 

difference method, where the spatial domain is broken into a coarser mesh leading sometimes to 

a significant reduction in execution time. Surprisingly enough this was never done to extract 

active subspaces and if so, the extracted subspace is used on the same coarse mesh. The contrary 

is true here where the low-fidelity model is the accelerated coarse meshed one which is used to 

extract the active subspace, then this subspace is examined on the original fine-mesh high 

fidelity model. 

It worth mentioning that in such a small model the (CMFD) will not buy a lot of 

reduction in running time but the same idea can be projected on a full assembly model where one 

cannot afford running the high fidelity model enough times to identify the active subspace. This 

case studies the 2x2 PWR mini assembly model consists of 2 UO2 pin cells and 2 MOX pin cells 

[109]. Each pin cell is divided into 9x9 fine mesh to represent the whole fidelity model, a coarser 

mesh is considered to help accelerating the convergence of the model and hence, each 3 cells are 

taken to be 1 coarse cell and hence the low-fidelity model is the mini assembly with each pin cell 

divided into 3x3 cells. Figure 5.1 draws a picture of both models showing different mixtures. 
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Fig. 5-1. 2x2 Mini PWR assembly. Left: Coarse Mesh (Low-fidelity model). Right: Fine Mesh 

(High-fidelity Model). 

The original parameter space dimension is 176358 coming from 741 material-reaction 

pairs * 238 energy groups. For such high dimensionality, it is always a good idea to use reduced 

order modeling techniques which will require running the original model for at least a number of 

runs that is equal to the intrinsic dimensionality which from previous experience can be in the 

order of few hundreds. Meaning that one needs to run the high-fidelity model few hundred times 

to extract the active subspace, but instead, the low-fidelity model is employed for this goal. Once 

the active parameter subspace is identified the proposed binomial estimator is then used to build 

a prior error bound, then the containment of all important directions forming the basis for the 

active parameter subspace is assessed via the high-fidelity model to check whether it violate the 

error bound constructed previously by the binomial estimator. 
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The low-fidelity model is depleted to different burnups and the one that gives the 

minimum error bounds declares the best active subspace. The responses of interest are taken to 

be the material flux at each of the 238 energy group. For the sake of illustration, the probability 

of failure is taken to be 15% (whereas in practice it is typically 0.001%). The reduced dimension 

is taken to be 800 dictating a cut off after the first 800 columns of the left singular vectors 

resulting from the singular value decomposition of the pseudo-response sensitivity profile as 

mentioned in chapter 3. The tests also reveal that the least error bounds and hence the best active 

subspace are captured when the reference case is depleted half way (30GWd/MTU) and at hot 

conditions. 

Fig. 5-2. Maximum and Mean Error Bounds for UO2 flux. 

 

Figures 5.2 and 5.3 give a list of 576 error bound (i.e., error bound for each material flux 

at each energy group). Assuming that these bounds are acceptable and that the energies of 

interest are those that gave errors that do not exceed 3% maximum error and 0.8% mean error. 



www.manaraa.com

 

  127 

These should be tested on the high-fidelity model (fine mesh) to defend the claim that the active 

subspace gained from the low-fidelity model will not violate these bounds when the high-fidelity 

model is projected to this active subspace. (Note that it is known that the very first and last 

energy groups tend to give much higher errors and that’s why in practice the responses of interest 

are typically taken to be reaction rates instead of flux). However, if the user did not accept the 

error bounds on the low-fidelity model, she either has to increase the size of the subspace or 

sample the basis in different condition, say more dominant conditions such as different burnups, 

temperatures, etc. 

 

Fig. 5-3. Maximum and Mean Error bounds for MOX flux. 

Next, the actual errors are plotted against the error bounds for both UO2 and MOX 

mixtures at each energy group and if the bounds from 5.2 and 5.3 are violated, then the low-

fidelity subspace could not represent the high-fidelity one. Luckily this is not the case here as can 

be inferred from figures 5.4 through 5.7. Even numbered figures show the relative errors vs. the 
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error bounds at one of the fast region flux (1.85-2.35 MeV) while the odd numbered ones are 

typically showing relative errors and error bounds for a typical thermal region (0.975-1.0 eV). 

Figures 5.4 and 5.5 deal with errors in UO2 flux, Whereas 5.6 and 5.7 are for MOX flux errors 

Fig. 5-4. Errors in UO2 Fast Flux. 

 

Fig. 5-5. Errors in UO2 Thermal Flux. 

Figure 5.4 assures that the fast flux in UO2 does not violate the bounds of 3% maximum 

error and 0.8 % mean error. Similarly, figure 5.5 declares that neither the thermal flux in UO2 
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does. In other words, the coarse mesh acceleration did not corrupt the active subspace enough to 

render any physical behavior of UO2 uncaptured and hence errors were not surprising and gave 

same predicted bounds. 

Fig. 5-6. Errors in MOX Fast Flux. 

Fig. 5-7. Errors in MOX Thermal Flux. 
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 Both of figures 5.6 and 5.7 warrant the same fact; that the error bounds are not violated 

by either energy groups in the MOX fuel too. Which means that the low-fidelity based active 

subspace managed successfully to capture all physics behaviors exhibited by the MOX fuel. 

Previous figures and discussion demonstrate that accelerating the construction of the 

ROM model by using a coarser mesh has not obscured the main characteristics of the active 

subspace in terms of its size and its associated error bounds on the responses of interest. 

 

5.3.2   Case Study 2: Finding the dominant fuel (UO2 or MOX) in the Active Parameter 

Subspace. 

 

If multiple fuel pin types are present in the assembly, it is natural to inquire as to which 

pin is more representative in terms of capturing the active subspace. A brute force approach 

would evaluate all pins altogether. A physics-informed guess supported by the developed error 

bound would prove more valuable. For this goal, a PWR fuel assembly with a large water 

boundary and a vacuum boundary condition is considered. A single row consisting of 7 UO2 pin 

cells adjacent to 8 MOX pin cells followed by a reflector region is studied as the high-fidelity 

model. The reflecting boundaries on the top and bottom justify the treatment of the model as an 

infinite model in the y-direction. The large reflector region induces enormous potential for 

scattering which will delay the conversion of the iterations and make the high fidelity model 

relatively expensive to run [110]. Given how big the parameter space is (i.e., 741 material-

reaction pairs * 238 energy groups=176358 cross sections), reduced order modeling techniques 

are to be used, this will require executing the adjoint version of the original model few hundred 

times which is the typical intrinsic dimension inferred from previous experience with similar 
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models. For this assembly model, this can be overwhelmingly expensive and hence motivates the 

use of MLROM. The low-fidelity model can be a single UO2 pin or a single MOX pin and 

maybe it is a good idea to try a pin cell adjacent to the same portion of the reflector. These 

suggested low-fidelity models are depleted to different points and each is passed to the error 

construction estimator discussed in chapter 4. Once the active subspace hosting all the possible 

variational directions sufficient to span the input space is extracted, then it is tested to see 

whether it can be promoted to represent the high-fidelity model as well without violating the 

error bound. Figure 5.8 layouts the high fidelity model showing both types of pin cells as well as 

the large reflector domain. 

Fig. 5-8. 15 Pins row of a PWR assembly (High-fidelity model). 

 The numerical test extracted the parameter active subspaces with lowest error bounds when 

the pin cell containing UO2 was depleted to 30 GWd/MTU adjacent to the same large reflector. 

This reveals that UO2 is more informative than MOX fuel in the sense that the active subspace 

extracted from UO2 better simulates the physical behaviors for the whole assembly than the 

MOX fuel. Figure 5.8 shows the low-fidelity model configuration. The responses are taken again 

to be the material flux at each energy group. The binomial estimator is used to construct a list of 

error bounds for each response which can be shown in figure 5-10. 

Fig. 5-9. UO2 pin cell with large reflector region (Low-fidelity model). 
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Figure 5.10 plots the bounds for relative errors in material flux at each energy group 

stating that the maximum and mean error bounds are less than 5% and 2% respectively for the 

fast region flux and the maximum and mean error bounds do not exceed 20% and 8% 

respectively in the thermal region. This active subspace is extracted from the low-fidelity model 

after depleting it half way (30 GWd/MTU) and the selected intrinsic coordinate is 800. Next, this 

active subspace is tested with the high-fidelity model to quantitatively judge how ‘good/bad’ the 

low-fidelity active subspace can represent the high-fidelity model. 

Fig. 5-10. Maximum and Mean Error Bounds in the material flux of UO2 from the (LF Model). 

Figures 5.11 through 5.14, each depicts a comparison between the actual errors due to the 

projection of the high-fidelity model onto the active subspace extracted from the low-fidelity 

model. Odd numbered figures within that range concerns about the error in the material flux 

within one of the fast groups (1.85-2.35 MeV), whereas the even numbered ones show the error 

in the material flux within a thermal group (0.975-1.0 eV). Figures 5.11 and 5.12 pictures the 

error in the UO2 material flux due to running the high-fidelity model constraining the perturbed 

cross sections to the active subspace extracted from the low-fidelity model, wherein figures 5.13 
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and 5.14 the error in the MOX material flux is inspected after the same projections onto the 

active subspace. 

 

Fig. 5-11. Error in UO2 material flux in the fast region (1.85-2.35 MeV). 

Figure 5.11 shows that the relative error has never exceeded the bound for the maximum 

errors in the fast groups (5%). The red dots represent the failed cases where the error bounds 

exceeded the actual relative errors and these are within a user-defined probability of 0.1. It is 

noticed that most of these failed cases are pretty close to the 45-degree solid line promising that 

the bounds for the failed cases are very close to the actual error. An important reminder to the 

reader is that the probability of failure was picked to be relatively large to allow the occurrence 

of some failed cases for the sake of illustration. In practice, the probability of failure is picked to 

be 0.00001 instead of 0.1, which adds a cost of sampling 5 random vectors instead of 1 and the 

cost of performing 5 matrix-vector product as shown in equation (4.30) with s = 5. 
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Fig. 5.12. Error in UO2 material flux in the thermal region (0.975-1.0 eV). 

Figure 5.12 assures that UO2 material flux did not violate the error bounds at all (20% 

max. error and 8% mean error) in the thermal energy range (0.975-1.0 eV). It is not surprising 

that the errors here agree with the estimated bounds because the subspace was extracted from the 

low-fidelity model which consists of a UO2 pin and a reflector. But what about the error in the 

MOX material flux? The MOX was not present in the low-fidelity model, will the active 

subspace properly represent the physics induced by the MOX pin as well? These questions are to 

be addressed in the following figures and discussion. 
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Fig. 5.13. Error in MOX material flux in the fast region (1.85-2.35 MeV). 

It is easily inferred from figure 5.12 that the relative error in the MOX material flux did 

not violate the expected bounds. Furthermore, it is noticeable that the errors exhibited by the 

MOX material flux in the specified fast region were much lower than the ones in the UO2. This 

reads that the subspace extracted from the UO2 already covers all the important directions swept 

by the MOX parameter space.  

Fig. 5-14. Error in MOX material flux in the thermal region (0.975-1.0 eV). 
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Figure 5-14 reassures that the thermal region error has not exceeded the bounds shown in 

figure 5-10 (8%) for most energy groups except for few energies such as the very first and last 

groups as well as few intermediate groups. In practice, the user can extract a table from Figure 5-

10 corresponding to each group bound and decide which groups is she concerned about and 

hence accept or reject the proposed subspace accordingly. This being said one can state that the 

active subspace extracted from the low-fidelity model has succeeded to accurately (within the 

allowable accuracy) represent the high-fidelity variations. And the binomial estimator was 

robustly used as a quantitative metric to assess the quality of the extracted active subspace. 

5.3.3   Case Study 3: Finding most Informative Pin Cell(s) in a Full Assembly. 

 This case study applies MLROM to a benchmark lattice model for the Peach Bottom 

Atomic Power Station Unit 2 (PB-2), which is an 1112 MWe Boiling Water Reactor (BWR) 

manufactured by General Electric with the fuel rods arranged in a 7x7 grid as shown in figure 5-

15. The main idea is to use one or more pin cell(s) to extract the active parameter subspace and 

then apply it to the whole assembly. This is intuitive since it is inspired by conventional nuclear 

reactor calculations, which are typically done at multiple levels. For example, in our 

demonstration, one is interested in computing an active subspace for the whole assembly over 

the entire range of depletion, but one can only afford to extract the active subspace using a lower 

level model representing a single fuel pin at a given composition. It is natural to think whether 

few fuel pin models at some prescribed compositions will be able to capture the interaction 

between the pins over the range of depletion.The main idea is to use one or more pin cell(s) to 

extract the active parameter subspace and then apply it to the whole assembly. This is intuitive 

since it is inspired by conventional nuclear reactor calculations, which are typically done at 

multiple levels. For example, in our demonstration, one is interested in computing an active 
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subspace for the whole assembly over the entire range of depletion, but one can only afford to 

extract the active subspace using a lower level model representing a single fuel pin at a given 

composition. It is natural to think whether few fuel pin models at some prescribed compositions 

will be able to capture the interaction between the pins over the range of depletion. 

 

 

Fig. 5-15. 7x7 BWR Assembly Benchmark.

    



www.manaraa.com

 

  138 

 

Fig. 5-16. Fuel Pellet, Fuel Rod, and Fuel Assembly.  

(http://www.nrc.gov/about-nrc/emerg-preparedness/images/fuel-pellet-assembly.jpg)   

The goal of this case study is to inspect which depletion point gives the best active 

subspace, in other words, if the model was depleted to different points, say 15, 30, 45 and 60 

GWd/MTU, then the active subspace is extracted for each case, which of these active subspaces 

is representative of the entire range of depletion? Which of the pin cells is dominant in the sense 

that the active subspace associated with it is the closest to the active subspace of the whole 

assembly? To answer this questions, few justifications were performed for the sake of 

simplification. Originally the desired model is 56 energy groups, and the number of cross 

sections is (127 nuclide*7 reactions*56 energy groups = 49784 input parameters), in this test we 

will only use a 44 group library, 3 reactions, and 111 nuclides are perturbed, and thus the input 

parameter has a dimension of 14652. Each pin cell will be depleted to different burnups. After 

gathering the required experience, the original model will be used with higher dimension, and 

more than one pin cell will be employed to span the whole parameter space as shown in case 

study 4. 
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In this test, the 2.93% enriched UO2 with 3% gadolinium pin cell is first depleted to 30 

GWd/MTU. The resulting composition is used as the reference model for constructing the 

subspace. This pin is picked as it is believed based on the physics to be the most representative 

of all pins in the lattice. Note here that our goal is to identify the dominant cross-sections for all 

the pins. Hence, this step requires familiarity with the model. After the subspace is constructed, 

we employ it to model other fuel pins to establish whether our initial assumption of 

representativeness is adequate, and this is what we have done in this work. If the assumption is 

adequate, we move to the next level, and test its adequacy to represent the entire lattice; if not, 

other pins might be added to construct a more representative subspace [108].  

The nominal dimension n of the parameter subspace for the reference pin cell is (93 fuel 

nuclides + 15 clad nuclides + 2 moderator nuclides + 1 gap nuclide) * 3 reactions * 44 energy 

groups that is 14,652 parameters. The effective dimensionality is selected to be 600. Note here 

that the error bounds are expected to vary from one response to the next because of two reasons. 

First, depending on the quality of the active subspace, different responses are expected to be 

captured to different degrees of accuracy. Second, because ROM attempts to identify the most 

influential components, non-influential responses such as the very fast and very thermal groups 

are expected to have higher relative errors than the rest of the groups.  

Figures 5.17 through 5.24 illustrate how the subspace extracted from the low-fidelity 

model behaves when used with different pin cells. Odd-numbered figures display the errors in 

the flux range of (1.85 – 2.35 MeV), whereas the even-numbered figures are for the range (0.625 

– 1.0 eV). Figures 5.17 through 5.20 show how the subspace behaves if used to identify the 

parameters of a 1.33% enriched UO2 pin cell, whereas figures 5.21 through 5.24 are for a 2.93% 

enriched UO2 pin cell. Figures 5.17, 5.18, 5.21 and 5.22 show the actual error vs. the error 
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bound due to parameter reduction after depleting to 15 GWd/MTU.  Whereas Figures 5.19, 5.20, 

5.23 and 5.24 are for pin cells that were depleted to 45 GWd/MTU. In all figures, the red dots 

represent failed cases where the blue ones represent the success, i.e., when the error bound is 

exceeded by the actual error. All the cases showed a failure probability of less than 0.1 which is 

the user-specified value. The solid 45-degree line separates the failure and success regions. In 

this demonstration, the probability of failure is picked to be relatively large for the sake of 

illustration to give room to the occurrence of failed cases. In practice, however, the failure 

probability is set to at most 0.00001. 

. 

Fig. 5-17. Fast Flux Error (15 GWd/MTU). 
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Fig. 5-18. Thermal Flux Error (15 GWd/MTU). 

 

Figures 5-17 and 5-18 show that the maximum error bound in the specified fast flux 

range is 0.35% whereas the maximum error bound in the specified thermal region is 0.5%. 

Figures 5.19 and 5-20 examine the active subspace applied on the same pin cell if the initial 

composition resulted from a 45 GWd/MTU depletion. 

Fig. 5-19. Fast Flux Error (45 GWd/MTU). 
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Fig. 5-20. Thermal Flux Error (45 GWd/MTU). 

The previous two figures show that the maximum error in the all the fast and thermal ranges are 

0.28% and 0.42%, respectively which is still within the range. Figures 5.21 and 5.22 show the 

fast and thermal flux errors for the 2.93% enriched UO2 pin cell after depleting to 15 

GWd/MTU. 

Fig. 5-21. Fast Flux Error (15 GWd/MTU). 
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Fig. 5-22. Thermal Flux Error (15GWd/MTU) 

Maximum error bound in fast and thermal flux are found to be 0.3% and 0.33 

respectively. Finally, figures 5.23 and 5.24 plot the errors if the pin cell is initially depleted to 45 

GWd/MTU. 

Fig. 5-23. Fast Flux Error (45GWd/MTU) 
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Fig. 5-24.  Thermal Flux Error (45GWd/MTU) 

Again figures 5-23 and 5-24 show that constraining the cross sections to the active space 

extracted from the reference pin cell model resulted in an error that does not exceed 0.3% for the 

specified fast range of (1.85 – 2.35 MeV) where the thermal range exhibited error bounds the 

follow the same pattern and recorded a maximum value of 0.3%. 

The previous test showed that the highest depleted pin cell (2.93%) with (3% gd) has 

managed to represent other pin cells with a maximum relative error of about 0.35% yet when this 

same pin cell was tested with the whole assembly it gave a very high errors indication that one 

either needs to add other pin cells when constructing the subspace and /or more basis needs to be 

sampled to capture the different physics rising from running the whole assembly. This motivates 

the next case study where a larger parameter space is involved, and more cross sections and 

reactions are perturbed with a higher number of energy groups resulting in almost tripling the 

size of the original parameter space. 

 



www.manaraa.com

 

  145 

5.3.4   Case Study 4: Construction of the Domain of Validity of Active Subspaces using 

MLROM. 

This case study employs the same assembly model showed in figure 5.14. The test is 

designed to accomplish the following: 

 Finding which pins are representative of the whole assembly. 

 Determining the domain of validity, which guarantees that constraining the cross sections 

to the proposed subspace will not exceed (with high probability) a user-specified error if 

the initial conditions, depletion, temperature and/or other conditions are perturbed. 

The previous test indicates that the 30 GWd/MTU depleted pin cells will give the best 

subspaces and that the highest depletion pin cell (with 3% gd.) will certainly be one of the pin 

cells selected to form the low-fidelity model. To pick which is the other pin cell(s) that needs to 

be added when extracting the active subspace, the following 3-dimensional visualization attempt 

is considered. The visualization indicates that the subspaces extracted from all the pins are so 

close to each other which implies that the subspace extracted from one (or more) pin cell(s) can 

be representative of the whole assembly model. 

It stands to reason that visualizing higher dimensional data can handicap the process, but 

it is also important to notice that we are not looking for the shape or topology of a higher 

dimensional subspace (or even hyperspace), rather we are looking for the relative differences 

between each pin’s subspace, so as long as we pick a similar visualization concept for all of 

them,  then we can detect which pin(s) has different important directions that are not captured by 

other pins. 
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To visualize this, each basis vector is divided into three parts, and the norm of each part 

is taken as a single coordinate: 
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where  r

xU  is a matrix whose orthonormal columns span the active subspace under inspection. 

The following figure shows this visualization attempt. 

 

Fig. 5.25. Scatter Visualization for the 9 Pin Cells Active Spaces. 

To analytically judge these subspaces and select the most representative one(s) the 

analyst can compute the angles between the active subspaces for each pin cell and the one for the 

whole assembly as follows: 
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Another way to pick the pin cells that most represent the whole assembly is to compute 

the angles between the different pin cells and pick pins that give the largest angles because very 

small angles declare that the two pin cells give active subspaces that coincide or are very close, 

this tells the analyst that one of these pin cells is enough. A natural choice, in this case, is to start 

with the most dominant pin cell such as the pin with the maximum depletion and/or the most 

frequently repeated pin and then compute the angles as follows: 

 
    1

, , , jcos
i j

r T r

x i x  U U                                                (5.5) 

From the previous discussion it follows that the 2.93% enriched UO2 with 3% gadolinium 

pin cell, the 1.94% enriched UO2 edge pin and the most frequently used 2.93% enriched UO2 pin 

are first depleted to 30 GWd/MTU. The resulting composition is used as the reference case for 

constructing the parameter subspace. These pins are assumed to be the most representative of all 

pins in the lattice since one of them has the highest enrichment, the other is the most frequent 

and the third is an edge pin which might capture the location and boundary conditions effect. 

Note here that our goal is to identify the dominant cross-sections for all the pins. Hence, this step 

requires familiarity with the model. After the subspace is constructed, we employ it to model 

other fuel pins to establish whether our initial assumption of representativeness is adequate. If 

the assumption is adequate, we move to the next level, and test its adequacy to represent the 

entire lattice; if not, other pins are added to construct a more representative subspace [112].  

The nominal dimension n of the parameter subspace for the reference pin cell is (127 

nuclides * 7 reactions * 56 energy groups = 49784 parameters. The effective dimensionality is 

selected to be 1500. Figures 5-26 and 5-27 test the extracted subspace on the most dominant-
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From the author’s perspective- pin cell, the one with the highest enrichment (2.93% UO2, 3% 

gd). Figure 5-26 demonstrates the flux error in the energy range (1.85 – 3.0) MeV, whereas fig. 

5-27 shows that error in the energy range (0.625 – 1.01) eV. 

Fig. 5-26. Fast Flux Error (2.93% UO2 Pin Cell, 3% gd.). 

Fig. 5-27. Thermal Flux Error (2.93% UO2 Pin Cell, 3% gd.). 
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Figure 5-28 states that the maximum and mean errors over the whole energy range does 

not exceed 3% and 0.7 % respectively. Of course, this is after ignoring the first and the last 

energy groups where a slight number of reactions occur.  

Fig. 5-28. Mixture 500, LF.  

The next step is to test this subspace on another pin cell preferably different that the ones 

used to extract the subspace.Mixture 4 (1.33% UO2 Pin Cell) is used for this purpose. 

Fig. 5-29. Mixture 4, LF. 
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Fortunately fig. 5-29 shows that the error resulting from this active subspace still gives a 

maximum error of 3% and a mean error of 0.7 %. This motivates one to have more confidence in 

the active subspace and use it with the full assembly. Figures 5-30 through 5-38 illustrate how 

the subspace extracted from the low-fidelity model behaves when used with the whole assembly. 

Each figure shows the maximum actual relative error in the flux of a certain fuel mixture due to 

projection on the extracted subspace. 

 

Fig. 5-30. Mixture 1 (30 GWd/MTU, Hot Conditions). 
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Fig. 5-31. Mixture 2 (30 GWd/MTU, Hot Conditions). 

 

 

Fig. 5-32. Mixture 4 (30 GWd/MTU, Hot Conditions). 
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Fig. 5-34. Mixture 201 (60 GWd/MTU, Hot Conditions). 

 

Fig. 5-33. Mixture 500 (60 GWd/MTU, Hot Conditions). 
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Fig. 5-35. Mixture 202 (30 GWd/MTU, Hot Conditions). 

Fig. 5-36. Mixture 203 (20 GWd/MTU, Cold Conditions). 
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Fig. 5-37. Mixture 212 (20 GWd/MTU, Cold Conditions). 

 

Fig. 5-38. Mixture 213 (20 GWd/MTU, Cold Conditions). 

The previous figures show that the maximum error in flux again did not exceed 3% and 

that the mean error is still below 0.7% which reflects that the extracted subspace is a good 

representative for the full assembly. 
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5.4 Conclusions 

This work has equipped our previously developed ROM techniques with probabilistic 

error metrics that bound the maximum errors resulting from the reduction. This is a mandatory 

feature for any ROM to ensure the reliability of the reduced model for subsequent engineering 

analyses, such as uncertainty and sensitivity analysis and credibly defend the predictions of the 

reduced model. Picking the appropriate algorithm for each interface, e.g., parameters, state, and 

responses, one can effectively aggregate the associated errors to estimate an error bound on the 

response of interest. This functionality will prove essential in multi-physics frameworks where 

the active subspace generated by one physics model is used as the basis for reducing the input 

space for another physics model. 

The estimation of error bounds requires sampling of the actual error using a user-defined 

PDF. Several oversamples are drawn from such PDF to calculate the corresponding errors of the 

ROM model with the maximum of these errors multiplied by a scalar to establish an upper-

bound on the ROM error. Numerical investigations have shown that the scalar multiplier could 

lead to an unnecessarily conservative bound, and have identified the reason for that being the use 

of Gaussian PDF to select the oversamples. This work has numerically illustrated that the use of 

a binomial distribution results in a more realistic bound, i.e., one that is closer to the actual 

reduction errors. 

More importantly, this work has shown a practical way by which the ROM errors can be 

evaluated for general reduction operators. This is invaluable when dealing with high fidelity 

codes that can only be executed few times, and it is difficult to extract their active subspaces. 
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This work proposes a new idea to construct the active subspace for a computationally 

expensive model. The basic idea is to employ the physics in a sub-domain, akin to lattice physics 

calculations and let the reduction theory determine the error bounds resulting from this 

application to other pin cell models. Results indicate that the idea is sound for the lattice model 

employed representing a BWR reactor. It is important to point out that while the idea here is akin 

to standard homogenization theory (at least in spirit since no actual homogenization is applied), 

the capability to calculate error bounds on the active subspace is present, which is not possible 

with existing homogenization theory techniques. This approach could help realize the potential 

of employing high fidelity simulation codes in a practical manner that can benefit the end-users. 
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